AARUPADAI VEEDU INSTITUTE OF TECHNOLOGY, PAIYANOOR

&

VINAYAKA MISSION'S KIRUPANANDA VARIYAR ENGINEERING COLLEGE, SALEM

(Constituent Colleges of Vinayaka Mission's Research Foundation Deemed to be University)

AICTE APPROVED & NAAC Accredited

VINAYAKA MISSION'S RESEARCH FOUNDATION

(Deemed to be University under section 3 of the UGC Act 1956)

Faculty of Engineering and Technology Department of Mechanical Engineering Programme : B.E/B.Tech - Mechanical Engineering Full Time (4 Years) STRUCTURED CHOICE BASED CREDIT SYSTEM (SCBCS) Curriculum & Syllabus (Semester I to VIII) Regulations 2017

AARUPADAI VEEDU INSTITUTE OF TECHNOLOGY, PAIYANOOR, CHENNAI

&

VINAYAKA MISSION'S KIRUPANANDA VARIYAR ENGINEERING COLLEGE, SALEM

Department of Mechanical Engineering

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

PEO.1. Design, analyze & fabricate, maintain and improve mechanical engineering systems that are technically sound, economically feasible and socially acceptable to enhance quality of life.

PEO.2. Apply modern computational, analytical, simulation tools and techniques to address the challenges faced in mechanical and allied engineering streams.

PEO.3. Communicate effectively using innovative tools and demonstrate leadership & entrepreneurial skills.

PEO.4. Exhibit professionalism, ethical attitude, team spirit and pursue lifelong learning to achieve career and organizational goals.

PROGRAM SPECIFIC OUTCOMES (PSOs)

To achieve the mission of the program, Mechanical Engineering graduates will be able:

PSO1. To work independently as well as in team to formulate, design, execute solutions for engineering problems and also analyze, synthesize technical data for application to product, process, system design & development

PSO2. To understand & contribute towards social, environmental issues, following professional ethics and codes of conduct and embrace lifelong learning for continuous improvement

PSO3. To develop expertise towards use of modern engineering tools, careers in industries and research and demonstrate entrepreneurial skill

PROGRAM OUTCOMES (POs) OR GRADUATE ATTRIBUTES

On completion of program of engineering, graduates will be able to:

Sl. No.	Outcome	Level of Outcome	Description
PO 1	Engineering knowledge	Apply	Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
PO 2	Problem analysis	Apply	Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO 3	Design/development of solutions	Apply	Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO 4	Conduct investigations of complex problems	Apply	Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO 5	Modern tool usage	Create	Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO 6	The engineer and society	Evaluate	Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO 7	Environment and sustainability	Analyze	Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO 8	Ethics	Evaluate	Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO 9	Individual and team work	Analyze	Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO 10	Communication	Evaluate	Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO 11	Project management and finance	Create	Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-long learning	Create	Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Credit Requirement for Course Categories

Sl. No.	Category of Courses	Credits
	A. Foundation Courses (FC)	54 - 63
01	i. Humanities and Sciences (English and Management Subjects)	12 – 21
	ii. Basic Sciences (Maths, Physics and Chemistry Subjects)	24 – 33
	iii. Engineering Sciences (Basic Engineering Courses)	18 - 27
02	B. Core courses (CC) relevant to the chosen programme of study.	81
	C. Elective Courses (EC)	18 - 27
03	i. Programme Specific (Class Room or Online)	12 – 15
	ii. Open (Class Room or Online)	6 - 9
	D. Project + Internship + Industry Electives (P + I + I)	18
04	i. Project	9
	ii. Internship / Industry Supported Courses	9
05	E. Employability Enhancement Courses + Co - Curricular Courses + Extra Curricular Courses (EEC)**	9 - 18
	Minimum Credits to be earned	180
** _	Mandatory, Credits would be mentioned in Mark sheets but not i CGPA Calculations.	included for

B.E/B.TECH. – MECHANICAL ENGINEERING - SEMESTER I TO VIII

CATEGORY A – FOUNDATION COURSES - HSS, BS AND ES COURSES - CREDITS (54-63)

(i) HUMANITIES AND SCIENCES (ENGLISH AND MANAGEMENT SUBJECTS) - CREDITS (12 - 21)

	•	· · · · · · · · · · · · · · · · · · ·							
S.No	CODE	COURSE	OFFERING DEPT.	CATEGORY	L	Т	Р	С	PREREQUISITE
1	17EGHS01	TECHNICAL ENGLISH	ENGLISH	FC (HSS)	3	0	0	3	NIL
2	17EGHS02	BUSINESS ENGLISH	ENGLISH	FC (HSS)	3	0	0	3	NIL
3	17YMHS82	YOGA AND MEDITATION	PHYSICAL EDUCATION	FC (HSS)	0	0	4	2	NIL
4	17EGHS81	ENGLISH LANGUAGE LAB	ENGLISH	FC (HSS)	0	0	4	2	NIL
5	17MBHS04	TOTAL QUALITY MANAGEMENT	MANAGEMENT	FC (HSS)	3	0	0	3	NIL
6	17MBHS01	ENGINEERING STARTUPS AND ENTREPRENEURIAL MANAGEMENT	MANAGEMENT	FC (HSS)	3	0	0	3	NIL
7	17MBHS07	PROFESSIONAL ETHICS AND HUMAN VALUES	MANAGEMENT	FC (HSS)	3	0	0	3	NIL
8	17MBHS08	PROJECT MANAGEMENT FOR ENGINEERING BUSINESS AND TECHNOLOGY	MANAGEMENT	FC (HSS)	3	0	0	3	NIL
9	17MBHS09	INTELLECTUAL PROPERTY RIGHTS & ALTERNATE DISPUTES RESOLUTIONS	MANAGEMENT	FC (HSS)	3	0	0	3	NIL
((ii) BASIC SC	IENCES (MATHS, PH	IYSICS AND CHEMIST	FRY SUBJEC	CTS)	- (CRE	DIT	rs (24 - 33)
S.No	CODE	COURSE	OFFERING DEPT.	CATEGORY	L	Т	Р	с	PREREQUISITE
1	17MABS01	ENGINEERING MATHEMATICS	MATHEMATICS	FC (BS)	2	2	0	3	NIL
2	17PCBS02	PHYSICAL SCIENCES	PHYSICS/CHEMISTRY	FC (BS)	4	0	0	4	NIL
3	17PHBS05	SMART MATERIALS	PHYSICS	FC (BS)	3	0	0	3	NIL

4	17CHBS01	ENVIRONMENTAL SCIENCE AND ENGINEERING	CHEMISTRY	FC (BS)	3	0	0	3	NIL
5	17PCBS81	PHYSICAL SCIENCES LAB	PHYSICS/CHEMISTRY	FC (BS)	0	0	4	2	NIL
6	17CHBS04	INDUSTRIAL MATERIALS	CHEMISTRY	FC (BS)	3	0	0	3	NIL
7	17MABS04	MATHEMATICS FOR MECHANICAL SCIENCES	MATHEMATICS	FC (BS)	2	2	0	3	ENGINEERING MATHEMATICS
8	17MABS11	NUMERICAL METHODS FOR MECHANICAL SCIENCES	MATHEMATICS	FC (BS)	3	2	0	3	MATHEMATICS FOR MECHANICAL SCIENCES
9	17MABS21	RESOURCE MANAGEMENT TECHNIQUE	MATHEMATICS	FC (BS)	2	2	0	3	NIL
10	17MABS20	PROBABILITY AND STATISTICS	MATHEMATICS	FC (BS)	2	2	0	3	NIL
11	17PHBS06	ENERGY PHYSICS	PHYSICS	FC (BS)	3	0	0	3	NIL
12	17PHBS07	SPACE SCIENCE	PHYSICS	FC (BS)	3	0	0	3	NIL
13	17PHBS08	FUNDAMENTALS OF NANO SCIENCE	PHYSICS	FC (BS)	3	0	0	3	NIL
		(iii) ENGINEE	RING SCIENCES - C	REDITS (18 -	27)				
S.No	CODE	COURSE	OFFERING DEPT.	CATEGORY	L	Т	Р	с	PREREQUISITE
1	17CSES01	ESSENTIALS OF COMPUTING	CSE	FC(ES)	2	0	2	3	NIL
2	17CMES02	BASICS OF CIVIL AND MECHANICAL ENGINEERING	CIVIL/MECHANIC AL	FC(ES)	4	0	0	4	NIL
3	17CSES05	PROGRAMMING IN PYTHON	CSE	FC(ES)	3	0	0	3	NIL
4	17EEES03	BASICS OF ELECTRICAL AND ELECTRONICS ENGINEERING	EEE/ECE	FC(ES)	4	0	0	4	NIL
5	17CME S81	ENGINEERING SKILLS PRACTICES LAB A-BASIC CIVIL ENGINEERING B-BASIC MECHANICA ENGINEERING	MECHANICAL	FC(ES)	0	0	4	2	NIL
6	17CSES83	PROGRAMMING IN PYTHON LAB	CSE	FC(ES)	0	0	4	2	NIL

7	17EEES82	ENGINEERING SKILLS PRACTICES LAB A-BASIC ELECTRICAL ENGINEERING B-BASIC ELECTRONICS ENGINEERING	EEE/ECE	FC(ES)	0	0	4	2	NIL
8	17MEES84	ENGINEERING GRAPHICS (THEORY & PRACTICE)	MECHANICAL	FC(ES)	1	0	4	3	NIL

		z d. i echi. – Mechanik				, , , , , , , , , , , , , , , , , , , ,			
	CATEGOR	Y B – CORE COURSES F	RELEVANT	FO THE PRO	GR	AMI	ME -	CI	REDITS (81)
S.No	CODE	COURSE	OFFERING DEPT.	CATEGORY	L	Т	Р	С	PREREQUISITE
1	17MECC01	BASIC MANUFACTURING PROCESS	MECH	СС	3	0	0	3	NIL
2	17MECC02	ENGINEERING THERMODYNAMICS	MECH	СС	2	1	0	3	NIL
3	17MECC03	ENGINEERING MECHANICS	MECH	СС	2	1	0	3	NIL
4	17CVCC34	FLUID MECHANICS AND MACHINERY	CIVIL	СС	3	0	0	3	NIL
5	17CVCC33	STRENGTH OF MATERIALS	CIVIL	СС	3	0	0	3	ENGINEERING MECHANICS
6	17MECC04	MANUFACTURING TECHNOLOGY	MECH	СС	3	0	0	3	NIL
7	17MECC05	MECHANICAL BEHAVIOUR OF MATERIALS AND METALLURGY	MECH	СС	3	0	0	3	NIL
8	17MECC06	KINEMATICS OF MACHINES	MECH	СС	3	0	0	3	ENGINEERING MECHANICS
9	17MECC07	THERMAL ENGINEERING	MECH	СС	2	1	0	3	ENGINEERING THERMODYNAMICS
10	17MECC08	DYNAMICS OF MACHINES	MECH	СС	2	1	0	3	KINEMATICS OF MACHINES
11	17MECC09	DESIGN OF MACHINE ELEMENTS	MECH	СС	2	1	0	3	STRENGTH OF MATERIALS
12	17MECC10	ENGINEERING METROLOGY AND MEASUREMENTS	MECH	СС	3	0	0	3	NIL
13	17MECC11	GAS DYNAMICS AND JET PROPULSION	MECH	СС	2	1	0	3	ENGINEERING THERMODYNAMICS
14	17MECC12	COMPUTER INTEGRATED MANUFACTURING	MECH	СС	3	0	0	3	NIL
15	17MECC13	DESIGN OF TRANSMISSION SYSTEMS	MECH	СС	2	1	0	3	DESIGN OF MACHINE ELEMENTS
16	17MECC14	HEAT AND MASS TRANSFER	MECH	СС	2	1	0	3	ENGINEERING THERMODYNAMICS

B.E/B.TECH. – MECHANICAL ENGINEERING - SEMESTER I TO VIII

17	17MECC15	FINITE ELEMENT ANALYSIS	MECH	СС	2	1	0	3	STRENGTH OF MATERIALS
18	17MECC16	INDUSTRIAL AUTOMATION	MECH	СС	3	0	0	3	NIL
19	17MECC17	AUTOMOTIVE ENGINEERING	MECH	СС	3	0	0	3	NIL
20	17MECC81	MANUFACTURING PROCESS LAB	MECH	CC	0	0	4	2	NIL
21	17MECC82	MACHINE DRAWING LAB	MECH	СС	1	0	4	2	NIL
22	17MECC83	MANUFACTURING TECHNOLOGY LAB	MECH	CC	0	0	4	2	NIL
23	17MECC84	METALLURGY LAB	MECH	CC	0	0	4	2	NIL
24	17MECC85	ENGINE TESTING LAB	MECH	CC	0	0	4	2	NIL
25	17CVCC93	HYDRAULICS AND STRENGTH OF MATERIALS LAB	CIVIL	СС	0	0	4	2	NIL
26	17MECC86	DYNAMICS & METROLOGY LAB	MECH	CC	0	0	4	2	NIL
27	17MECC87	AUTOMOBILE ENGINEERING LAB	MECH	CC	0	0	4	2	NIL
28	17MECC88	COMPUTER INTEGRATED MANUFACTURING LAB	MECH	CC	0	0	4	2	NIL
29	17MECC89	HEAT TRANSFER LAB	MECH	CC	0	0	4	2	NIL
30	17MECC90	FINITE ELEMENT ANALYSIS LAB	MECH	CC	0	0	4	2	NIL
31	17MECC91	INDUSTRIAL AUTOMATION LAB	MECH	CC	0	0	4	2	NIL
32	17MECC18	MANUFACTURING ENGINEERING	MECH	СС	3	0	0	3	NIL
33	17MECC19	MACHANICS OF MACHINES	MECH	СС	3	0	0	3	NIL
34	17MECC92	DYNAMICS LAB	MECH	СС	0	0	4	2	NIL
35	17MECC93	HYDRAULICS AND PNEUMATIC SYSTEMS LAB	MECH	СС	0	0	4	2	NIL
36	17MECC94	MANUFACTURING ENGINEERING LAB	MECH	СС	0	0	4	2	NIL

B.E/B.TECH. – MECHANICAL ENGINEERING - SEMESTER I TO VIII DETAILS OF ELECTIVE COURSES FOR DEGREE WITH SPECIALISATION

CATEGORY C – ELECTIVE COURSES - CREDITS (18 - 27)

(i) PROGRAMME SPECIFIC (CLASS ROOM OR ONLINE) - CREDITS (12 - 15)

						1	r		
S.No	CODE	COURSE	OFFERING DEPT.	CATEGORY	L	т	Р	С	PREREQUISITE
		SPECIALISATION -	AERONAU	FICAL ENGI	NEE	RINO	J		
1	17ARSE43	AERODYNAMICS	AERO	EC - SE	3	0	0	3	NIL
2	17ARSE44	AEROSPACE PROPULSION	AERO	EC - SE	3	0	0	3	NIL
3	17ARSE45	AIRCRAFT STRUCTURES	AERO	EC - SE	3	0	0	3	NIL
4	17ARCC09	AIRCRAFT PERFORMANCE STABILITY AND CONTROL	AERO	EC - SE	3	0	0	3	NIL
5	17ARCC10	AIRCRAFT MATERIALS AND PROCESSES	AERO	EC - SE	3	0	0	3	NIL
6	17ARSE34	AIRCRAFT GENERAL ENGINEERING AND MAINTENANCE PRACTICES	AERO	EC - SE	3	0	0	3	NIL
7	17ARSE41	AIRCRAFT STRUCTURES LAB	AERO	EC - SE	0	0	4	2	NIL
8	17ARSE42	AERO ENGINE LAB	AERO	EC - SE	0	0	4	2	NIL
9	17ARCC83	AERO SPACE PROPLUSION LAB	AERO	EC - SE	0	0	4	2	NIL
10	17ARCC84	AERODYNAMICS LAB	AERO	EC - SE	0	0	4	2	NIL
	<u> </u>	SPECIALISATION -	- AUTOMO	TIVE ENGIN	EER	ING	·	·	·
11	17ATCC03	AUTOMOTIVE CHASSIS	AUTO	EC - SE	3	0	0	3	NIL
12	17ATEC15	VEHICLE TRANSPORT MANAGEMENT	AUTO	EC - SE	3	0	0	3	NIL
13	17ATCC13	ENGINE AND VEHICLE MANAGEMENT SYSTEM	AUTO	EC - SE	3	0	0	3	NIL

14	17ATCC14	VEHICLE MAINTENANCE	AUTO	EC - SE	3	0	0	3	NIL
15	17ATCC04	AUTOMOTIVE ELECTRICAL AND ELECTRONIC SYSTEMS	AUTO	EC - SE	3	0	0	3	NIL
16	17ATEC04	SPECIAL TYPES OF VEHICLES	AUTO	EC - SE	3	0	0	3	NIL
17	17ATCC08	AUTOMOTIVE POLLUTION CONTROL	AUTO	EC - SE	3	0	0	3	NIL
18	17ATCC17	TWO AND THREE WHEELER TECHNOLOGY	AUTO	EC - SE	3	0	0	3	NIL
19	17ATCC82	AUTOMOTIVE CHASSIS LAB	AUTO	EC - SE	0	0	4	2	NIL
20	17ATCC89	VEHICLE MAINTENANCE AND SERVICING LAB	AUTO	EC - SE	0	0	4	2	NIL
21	17ATCC88	TWO AND THREE WHEELER LAB	AUTO	EC - SE	0	0	4	2	NIL
22	17ATCC83	AUTOMOTIVE ELECTRICAL AND ELECTRONICS LAB	AUTO	EC - SE	0	0	4	2	NIL
		SPECIALISATI	ON – ENERG	Y ENGINEE	RING	Ť			
23	17MESE01	ENERGY CONSERVATION IN THERMAL SYSTEMS	MECHANICA	L EC - SE	3	0	0	3	NIL
24	17MESE02	ENERGY CONSERVATION AND MANAGEMENT	MECHANICA	L EC - SE	3	0	0	3	NIL
25	17MESE03	HYDROGEN AND FUEL CELL TECHNOLOGY	MECHANICA	L EC - SE	3	0	0	3	NIL
26	17MESE04	RENEWABLE SOURCES OF ENERGY	MECHANICA	L EC - SE	3	0	0	3	NIL
27	17MESE05	WASTE ENERGY CONVERSION TECHNOLOGIES	MECHANICA	L EC - SE	3	0	0	3	NIL
28	17MESE06	BIO ENERGY TECHNOLOGY	MECHANICA	L EC - SE	3	0	0	3	NIL
29	17MESE07	NUCLEAR POWER ENGINEERING	MECHANICA	L EC - SE	3	0	0	3	NIL
30	17MESE81	ENERGY LAB	MECHANICA	L EC - SE	0	0	4	2	NIL

31	17MESE82	ALTERNATE FUEL TESTING LAB	MECHANICAL	EC - SE	0	()	4	2	NIL
		SPECIALI	ZATION – PRODUC	T LIFE CYCLE	2					
32	17MESE08	PRODUCT DESIGN AND DEVELOPMENT	MECHANICAL	EC - PS	3	0	0	3		NIL
33	17MESE09	NEW PRODUCT DEVELOPMENT	MECHANICAL	EC - PS	3	0	0	3		NIL
34	17MESE10	DESIGN FOR MANUFACTURING AND ASSEMBLY	MECHANICAL	EC - PS	3	0	0	3		NIL
35	17MESE11	FAILURE MODE AND EFFECTS ANALYSIS	MECHANICAL	EC - PS	3	0	0	3		NIL
36	17MESE12	PRODUCT LIFE CYCLE MANAGEMENT	MECHANICAL	EC - PS	3	0	0	3		NIL
37	17MESE13	GEOMETRIC MODELING	MECHANICAL	EC - PS	3	0	0	3		NIL
38	17MESE14	REVERSE ENGINEERING	MECHANICAL	EC - PS	3	0	0	3		NIL
39	17MESE15	SUPPLY CHAIN MANAGEMENT	MECHANICAL	EC - PS	3	0	0	3		NIL
		SPECIALIZATI	ON – MANUFACTUF	RING ENGINE	ERIN	G				
40	17MESE16	INDUSTRIAL TRIBOLOGY	MECHANICAL	EC - PS	3	0	0	3		NIL
41	17MESE17	MODERN MANUFACTURING METHODS	MECHANICAL	EC - PS	3	0	0	3		NIL
42	17MESE18	METAL FORMING AND JOINING PROCESS	MECHANICAL	EC - PS	3	0	0	3		NIL
43	17MESE19	PROCESS PLANNING AND COST ESTIMATION	MECHANICAL	EC - PS	3	0	0	3		NIL
44	17MESE20	RAPID PROTOTYPING AND TOOLING	MECHANICAL	EC - PS	3	0	0	3		NIL
45	17MESE21	IRON AND STEEL MAKING	MECHANICAL	EC - PS	3	0	0	3		NIL
46	17MESE22	AUTOMOTIVE INFOTRONICS	MECHANICAL	EC - PS	3	0	0	3		NIL
47	17MESE23	MICRO AND NANO MACHINING	MECHANICAL	EC - PS	3	0	0	3		NIL

		SPECIALIZ	ATION – THERMA	L ENGINEERI	NG				
48	17MESE24	COMBUSTION ENGINEERING	MECHANICAL	EC - PS	3	0	0	3	ENGINEERING THERMODYNAMICS
49	17MESE25	COMPUTATIONAL FLUID DYNAMICS	MECHANICAL	EC - PS	3	0	0	3	ENGINEERING THERMODYNAMICS FLUID MECHANICS AND MACHINERY
50	17MESE26	CRYOGENIC ENGINEERING	MECHANICAL	EC - PS	3	0	0	3	ENGINEERING THERMODYNAMICS
51	17MESE27	POWER PLANT ENGINEERING	MECHANICAL	EC - PS	3	0	0	3	THERMAL ENGINEERING
52	17MESE28	REFRIGERATION AND AIR- CONDITIONING	MECHANICAL	EC - PS	3	0	0	3	NIL
53	17MESE29	TURBOMACHINERY	MECHANICAL	EC - PS	3	0	0	3	ENGINEERING THERMODYNAMICS FLUID MECHANICS AND MACHINERY
54	17MESE30	DESIGN OF THERMAL POWER EQUIPMENTS	MECHANICAL	EC - PS	3	0	0	3	NIL
55	17MESE31	ADVANCED CERAMIC TECHNOLOGY	MECHANICAL	EC - PS	3	0	0	3	NIL
		SPECIALIZ	ATION – MATERIA	LS ENGINEERI	NG				
56	17MESE32	COMPOSITE MATERIALS	MECHANICAL	EC - PS	3	0	0	3	NIL
57	17MESE33	EMERGING MATERIALS	MECHANICAL	EC - PS	3	0	0	3	NIL
58	17MESE34	FAILURE ANALYSIS OF MATERIALS	MECHANICAL	EC - PS	3	0	0	3	NIL
59	17MESE35	NANOSTRUCTURED MATERIALS AND APPLICATIONS	MECHANICAL	EC - PS	3	0	0	3	NIL
60	17MESE36	STRUCTURAL PROPERTY OF ENGINEERING MATERIALS	MECHANICAL	EC - PS	3	0	0	3	NIL
61	17MESE37	THEORIES OF ELASTICITY	MECHANICAL	EC - PS	3	0	0	3	NIL
		SPECIALIZA	TION – INDUSTRIA	AL ENGINEER	ING	•			

					Γ	r	1		
62	17MESE38	INDUSTRIAL ENGINEERING	MECHANICAL	EC - PS	3	0	0	3	NIL
63	17MESE39	LEAN MANUFACTURING SYSTEMS	MECHANICAL	EC - PS	3	0	0	3	NIL
64	17MESE40	INSPECTION AND STATISTICAL QUALITY CONTROL	MECHANICAL	EC - PS	3	0	0	3	NIL
65	17MESE41	MAINTENANCE MANAGEMENT	MECHANICAL	EC - PS	3	0	0	3	NIL
66	17MESE42	DESIGN FOR QUALITY	MECHANICAL	EC - PS	3	0	0	3	NIL
67	17MESE43	MANAGEMENT FOR ENGINEERS	MECHANICAL	EC - PS	3	0	0	3	NIL
68	17MESE44	SIX SIGMA QUALITY MANAGEMENT	MECHANICAL	EC - PS	3	0	0	3	NIL
69	17MESE45	STRATEGIC QUALITY MANAGEMENT	MECHANICAL	EC - PS	3	0	0	3	NIL
70	17MESE46	WORK DESIGN AND ERGONOMICS	MECHANICAL	EC - PS	3	0	0	3	NIL
			GENERAL ELECTI	IVES					
71	17MEEC01	HYDRAULICS AND PNEUMATIC SYSTEMS	MECHANICAL	EC - PS	3	0	0	3	NIL
72	17MEEC02	FUNDAMENTALS OF PIPING ENGINEERING	MECHANICAL	EC - PS	3	0	0	3	NIL
73	17MEEC03	PETROLEUM PRODUCTION ENGINEERING	MECHANICAL	EC - PS	3	0	0	3	NIL
74	17MEEC04	AGRICULTURAL ENGINEERING EQUIPMENTS	MECHANICAL	EC - PS	3	0	0	3	NIL
75	17MEEC05	BIOMECHANICS	MECHANICAL	EC - PS	3	0	0	3	NIL
76	17MEEC06	MEMS & NEMS	MECHANICAL	EC - PS	3	0	0	3	NIL
77	17MEEC07	NAVAL ARCHITECTURE	MECHANICAL	EC - PS	3	0	0	3	NIL
78	17MEEC08	SHIP BUILDING	MECHANICAL	EC - PS	3	0	0	3	NIL
79	17MEEC09	MARINE AUXILIARY MACHINERY	MECHANICAL	EC - PS	3	0	0	3	NIL

80	17MEEC10	MARINE REFRIGERATION & AIR-CONDITIONING	MECHANICAL	EC - PS	3	0	0	3	NIL
81	17MEEC11	INDUSTRIAL ROBOTICS	MECHANICAL	EC - PS	3	0	0	3	NIL
82	17MEEC12	DESIGN OF EXPERIMENTS	MECHANICAL	EC - PS	3	0	0	3	NIL
83	17MEEC13	INDUSTRIAL SAFETY	MECHANICAL	EC - PS	3	0	0	3	NIL
84	17MEEC14	COMPUTATIONAL FLUID DYNAMICS	MECHANICAL	EC - PS	3	0	0	3	NIL
85	17MEEC15	CONCURRENT ENGINEERING	MECHANICAL	EC - PS	3	0	0	3	NIL
86	17MEEC16	FLUID POWER SYSTEMS	MECHANICAL	EC - PS	3	0	0	3	NIL
87	17MEEC17	ENGINEERING PRODUCT DESIGN	MECHANICAL	EC - PS	3	0	0	3	NIL
88	17MEEC18	ADVANCED IC ENGINES	MECHANICAL	EC - PS	3	0	0	3	ENGINEERING THERMODYNAMICS
89	17MEEC19	AUTOMOTIVE INFOTRONICS	MECHANICAL	EC - PS	3	0	0	3	BASIC ELECTRICAL AND ELECTRONICS ENGINEERING

B.E/B.TECH. – MECHANICAL ENGINEERING - SEMESTER I TO VIII DETAILS OF ELECTIVE COURSES FOR DEGREE WITH SPECIALISATION

CATEGORY C – ELECTIVE COURSES - CREDITS (18 - 27)

(ii) OPEN ELECTIVE (CLASS ROOM OR ONLINE) - CREDITS (6 - 9)

S.No	CODE	COURSE	OFFERING DEPT.	CATEGORY	L	Т	Р	С	PREREQUISITE
1	17ATEC13	COMPUTER SIMULATION OF IC ENGINE PROCESSOR	AUTO	EC - OE	3	0	0	3	NIL
2	17ATEC14	COMPUTER CONTROLLED VEHICLE SYSTEMS	AUTO	EC - OE	3	0	0	3	NIL
3	17ATEC12	FUEL CELL TECHNOLOGY	AUTO	EC - OE	3	0	0	3	NIL
4	17ATEC03	MODERN AUTOMOBILE ACCESSORIES	AUTO	EC - OE	3	0	0	3	NIL
5	17ATEC02	NEW GENERATION AND HYBRID VEHICLES	AUTO	EC - OE	3	0	0	3	NIL
6	17ATEC05	POLYMER COMPONENTS AND RUBBER MATERIALS IN AUTOMOTIVE APPLICATIONS	AUTO	EC - OE	3	0	0	3	NIL
7	17ATEC17	VEHICLE AIR- CONDITIONING	AUTO	EC-PS	3	0	0	3	NIL
8	17AREC02	UNMANNED AIRCRAFT SYSTEMS	AERO	EC - OE	3	0	0	3	NIL
9	17ARSE21	ROCKETS AND MISSILES	AERO	EC - OE	3	0	0	3	NIL
10	17ARSE35	ADVANCED MATERIALS AND NDT FOR AEROSPACE APPLICATIONS	AERO	EC - OE	3	0	0	3	NIL
11	17ARSE36	AIRCRAFT MAINTENANCE AND REPAIR	AERO	EC - OE	3	0	0	3	NIL
12	17BTEC13	FOOD PROCESSING TECHNOLOGY	BIOTECH	EC - OE	3	0	0	3	NIL
13	17BTEC30	BIOFERTILIZER TECHNOLOGY	BIOTECH	EC - OE	3	0	0	3	NIL
14	17BTEC25	BIOLOGY FOR NON BIOLIGISTS	BIOTECH	EC - OE	3	0	0	3	NIL

15	17BTEC30	NATURAL RESOURCE MANAGEMENT	BIOTECH	EC - OE	3	0	0	3	NIL
16	17BTEC31	APPLICATION OF ENZYME IN WASTE MANAGEMENT	BIOTECH	EC - OE	3	0	0	3	NIL
17	17CVSE35	QUALITY CONTROL ASSURANCE IN REAL ESTATE	CIVIL	EC - OE	3	0	0	3	NIL
18	17CVSE42	GREEN AND ENERGY EFFICIENT BUILDING	CIVIL	EC - OE	3	0	0	3	NIL
19	17CVSE41	INFRASTRUCTURE PROJECT DEVELOPMENT	CIVIL	EC - OE	3	0	0	3	NIL
20	17CVSE28	URBAN TRANSPORTATION INFRASTRUCTURE- PLANNING AND DESIGN	CIVIL	EC - OE	3	0	0	3	NIL
21	17EECC14	ELECTRICAL MACHINES AND DRIVES	EEE	EC - OE	3	0	0	3	NIL
22	17EECC04	MEASUREMENTS AND INSTRUMENTATION	EEE	EC - OE	3	0	0	3	NIL
23	17EECC16	POWER ELECTRONICS AND DRIVES	EEE	EC - OE	3	0	0	3	NIL
24	17ECCC07	MICROCONTROLLER AND ITS APPLICATIONS	ECE	EC - OE	3	0	0	3	NIL
25	17ECCC18	INTERNET OF THINGS FOR ELECTRONICS	ECE	EC - OE	3	0	0	3	NIL
26	17ECPE06	MEMS AND SENSORS	ECE	EC - OE	3	0	0	3	NIL
27	17BMSE11	BIOMECHANICS	BME	EC - OE	3	0	0	3	NIL
28	17BMSE13	BIOMATERIALS AND ARTIFICIAL ORGANS	BME	EC - OE	3	0	0	3	NIL
29	17BMSE16	ROBOTICS AND AUTOMATION IN MEDICINE	BME	EC - OE	3	0	0	3	NIL
30	17BMSE18	CRITICAL CARE INSTRUMENTS AND THERAPEUTIC EQUIPMENT	BME	EC - OE	3	0	0	3	NIL
31	17CSEC09	ETHICAL HACKING	CSE	EC - OE	3	0	0	3	NIL
32	17CSEC11	GREEN COMPUTING	CSE	EC - OE	3	0	0	3	NIL

33	17CSEC24	OPEN SOURCE SYSTEMS	CSE	EC - OE	3	0	0	3	NIL
34	17CSEC32	VIRTUAL REALITY	CSE	EC - OE	3	0	0	3	NIL
35	17CSEC30	UNIX INTERNALS	CSE	EC - OE	3	0	0	3	NIL

B.E/B.TECH. – MECHANICAL ENGINEERING - SEMESTER I TO VIII

CATEGORY D – PROJECT + INTERNSHIP + INDUSTRY ELECTIVES (P + I + I)- CREDITS (18)

(i) **PROJECT - CREDITS (9)**

	(i) INTERNISIII + INDUSTRI ELECTIVES - CREDITS ()													
S.No	CODE	COURSE	OFFERING DEPT.	CATEGORY	L	Т	Р	С	PREREQUISITE					
1	17MEPI01	PROJECT WORK	MECHANICAL	PI	0	0	18	9	NIL					
2	17MEPI02	INTERNSHIP	MECHANICAL	PI				3	NIL					
3	17MEPI03	NOISE VIBRATION AND HARSHNESS	MECHANICAL	PI	2	1	0	3	NIL					
4	17MEPI04	NON DESTRUCTIVE TESTING	MECHANICAL	PI	3	0	0	3	NIL					
5	17MEPI05	COAL MINING ND MECHANIZATION	MECHANICAL	PI	3	0	0	3	NIL					
6	17ARIE03	INTRODUCTION TO AIRCRAFT INDUSTRY AND AIRCRAFT SYSTEMS	AERO	PI	3	0	0	3	NIL					
7	17ARIE04	DESIGN OF AIRCRAFT STRUCTURES	AERO	PI	3	0	0	3	NIL					

(i) INTERNSHIP + INDUSTRY ELECTIVES - CREDITS (9)

B.E/B.TECH. – MECHANICAL ENGINEERING - SEMESTER I TO VIII CATEGORY E - EMPLOYABILITY ENHANCEMENT COURSES, CO - CURRICULAR COURSES AND EXTRA CURRICULAR COURSES (EEC)** - CREDITS (9 - 18) (** - MANDATORY, CREDITS WOULD BE MENTIONED IN MARK SHEETS BUT NOT INCLUDED FOR CGPA CALCULATIONS.) OFFERING S.No CODE COURSE CATEGORY Т С PREREQUISITE L Р DEPT. **EMPLOYABILITY ENHANCEMENT COURSES (EEC)** CNC PROGRAMMING 17MEEE01 EEC 2 NIL 1 MECHANICAL 0 0 4 (HANDS ON TRAINING) DESIGN AND FABRICATION OF FIBRE 2 17MEEE02 REINFORCED MECHANICAL EEC 0 0 4 2 NIL COMPOSITES (HANDS ON TRAINING) STRUCTURAL AND THERMAL ANALYSIS -17MEEE03 2 3 MECHANICAL EEC 0 0 4 NIL ANSYS (HANDS ON TRAINING) TWO AND FOUR WHEELER SERVICING 17ATEE02 NIL MECHANICAL EEC 2 4 0 0 4 (HANDS ON TRAINING) **CO - CURRICULAR COURSES** 17NCEE01 NCC NCC HSS 0 0 4 2 NIL 1 17NSEE01 2 NSS NSS HSS 0 0 4 2 NIL PHYSICAL 3 17PEEE01 PHYSICAL EDUCATION HSS 2 NIL 0 0 4 EDUCATION **EXTRA CURRICULAR COURSES** MOOC - ONLINE 1 COURSES 2 SOFT SKILLS TRAINING

AARUPADAI VEEDU INSTITUTE OF TECHNOLOGY, CHENNAI & VINAYAKA MISSION'S KIRUPANANDA VARIYAR ENGINEERING COLLEGE, SALEM

FACULTY OF ENGINEERING AND TECHNOLOGY

STRUCTURED CHOICE BASED CREDIT SYSTEM

BOARD: MECHANICAL ENGINEERINGREGULATION: 2017PROGRAM: B.E/B.Tech., - MECHANICAL ENGINEERING
(FULL TIME-REGULAR)

Г

CURRICULUM AND SYLLABUS

		SEMESTE	R – I					
S.NO	COURSE CODE	COURSE TITLE	OFFERING DEPARTMENT	CATEGORY	L	Т	Р	С
		THEORY						
1	17EGHS01	TECHNICAL ENGLISH	ENGLISH	FC(HSS)	3	0	0	3
2	17MABS01	ENGINEERING MATHEMATICS	MATHEMATICS	FC(BS)	2	2	0	3
3	17PCBS02	PHYSICAL SCIENCES	PHYSICS / CHEMISTRY	FC(BS)	4	0	0	4
4	17CSES01	ESSENTIALS OF COMPUTING	CSE	FC(ES)	2	0	2	3
5	17CMES02	BASICS OF CIVIL AND MECHANICAL ENGINEERING	CIVIL / MECHANICAL	FC(ES)	4	0	0	4
		PRACTICA	L					
6	17EGHS81	ENGLISH LANGUAGE LAB	ENGLISH	FC(HSS)	0	0	4	2
7	17PCBS81	PHYSICAL SCIENCES LAB	PHYSICS / CHEMISTRY	FC(BS)	0	0	4	2
8	17CMES81	ENGINEERING SKILLS PRACTICE LAB BASIC CIVIL ENGINEERING BASIC MECHANICAL ENGINEERING	CIVIL / MECHANICAL	FC(ES)	0	0	4	2
9	17YMHS82	YOGA & MEDITATION	PHYSICAL EDUCATION	FC(HSS)	0	0	4	2
		TOTAL			15	2	18	25
L-LEC	TURE HOUR	T –TUTORIAL HOUR	P – PRACTICAL HO	DUR	C –CR	EDIT		

HSS	HUMANITIES AND SOCIAL SCIENCES	CC	CORE COURSES
BS	BASIC SCIENCES	EC	ELECTIVE COURSES
ES	ENGINEERING SCIENCES		EMPLOYABILITY ENHANCEMENT COURSES +
PII	PROJECT + INTERNSHIP + INDUSTRY ELECTIVES	EEC	EXTRA CURRICULAR COURSES + CO - CURRICULAR COURSES

AARUPADAI VEEDU INSTITUTE OF TECHNOLOGY, CHENNAI

&

VINAYAKA MISSION'S KIRUPANANDA VARIYAR ENGINEERING COLLEGE, SALEM

FACULTY OF ENGINEERING AND TECHNOLOGY

STRUCTURE CHOICE BASED CREDIT SYSTEM

BOARD: MECHANICAL ENGINEERINGREGULATION: 2017PROGRAM: B.Tech., - MECHANICAL ENGINEERING (FULL TIME-REGULAR)

CURRICULUM AND SYLLABUS

		SEMEST	TER – II					
S.NO	COURSE CODE	COURSE TITLE	OFFERING DEPARTMENT	CATEGORY	L	Т	Р	С
		THEO	RY					
1	17MABS04	MATHEMATICS FOR MECHANICAL SCIENCES	MATHEMATICS	FC(BS)	2	2	0	3
2	17CSES05	PROGRAMMING IN PYTHON	CSE	FC(ES)	3	0	0	3
3	17MECC01	BASIC MANUFACTURING PROCESS	MECHANICAL	CC	3	0	0	3
4	17PHBS05	SMART MATERIALS	PHYSICS	FC(BS)	3	0	0	3
5	17EEES03	BASICS OF ELECTRICAL AND ELECTRONICS ENGINEERING	EEE & ECE	FC(ES)	4	0	0	4
	-	PRACT	ICAL	1				
6	17CSES83	PROGRAMMING IN PYTHON LAB	CSE	FC(ES)	0	0	4	2
7	17MEES84	ENGINEERING GRAPHICS (Theory + Practice)	MECHANICAL	FC(ES)	1	0	4	3
8	17MECC81	MANUFACTURING PROCESS LAB	MECHANICAL	CC	0	0	4	2
9	17EEES82	ENGINEERING SKILLS PRACTICE LAB BASIC ELECTRICAL ENGINEERING BASIC ELECTRONICS ENGINEERING	EEE & ECE	FC(ES)	0	0	4	2
		ΤΟΤΑ	AL		16	2	16	25
L – LEC	TURE HOUR	T – TUTORIAL HOUR	HOUR	C	C – CF	REDI	Г	

HSS	HUMANITIES AND SOCIAL SCIENCES	CC	CORE COURSES
BS	BASIC SCIENCES	EC	ELECTIVE COURSES
ES	ENGINEERING SCIENCES		EMPLOYABILITY ENHANCEMENT COURSES +
PII	PROJECT + INTERNSHIP + INDUSTRY ELECTIVES	EEC	EXTRA CURRICULAR COURSES + CO - CURRICULAR COURSES

FOUNDATION COURSES HUMANITIES AND SCIENCES AND MANAGEMENT

170	17EGHS01TECHNICAL ENGLISHCategoryLTPCred											L	Т	Р	Cre	dit
1/E	GHSUI									FC(H	S)	3	0	0	3	;
develo profes Lister	nical Englis oping com ssional con ning, Speal etent and e	muni itext. king,	ication The (Read	n skills outcom ing and	in Engl ne of the d Writin	ish, es cours g com	e is to petence	l for u help t cy in E	nderst he stu	anding dents a	and exp cquire th	oressi ne lar	ing th nguag	e idea e skill	s of diff ls of	erent
PREI	REQUISI	ГЕ -	NIL													
COU	RSE OBJ	ЕСТ	IVES	5												
1	To enable	e stu	dents	to deve	elop LSI	RW sk	ills in	Engli	sh. (Li	stening	g, Speaki	ing, l	Readi	ng, an	d Writir	ng.)
2	To make	then	n to be	ecome	effective	e com	munic	ators								
3	To ensur	e tha	t learı	ners us	e Electr	onic n	nedia	materi	als for	develo	ping lan	iguag	ge			
4	To aid th	e stu	dents	with e	mployat	oility s	kills.									
5	To motiv	ate s	studen	ts cont	inuously	to us	e Engl	lish la	nguage	2						
6	To devel	op th	ne stuc	lents co	ommuni	cation	skills	in for	mal ar	nd infor	mal situ	atior	18			
COU	RSE OUT	CO	MES													
On th	e successfu	ul co	mplet	ion of	the cour	se, stu	dents	will b	e able	to						
CO1.	Listen, un	derst	and a	nd resp	ond to c	others	in diff	erent	scena	rio				Under	rstand	
CO2. situati	Speak flue	ently	and c	orrectl	y with c	orrect	pronu	nciati	on in c	lifferen	t			Ap	ply	
CO3.	To make t	he st	udent	s expe	rts in pro	ofessic	onal w	riting						Ap	ply	
	To make t rs in busine							nical	writing	g in the	ir			Ap	ply	
	To make t etically stro		udent	s good	commu	nicato	rs at tl	he woi	rk plac	e and t	o be			Ap	ply	
CO6.	To make t	he st	udent	s in pro	oficient	techni	cal co	mmun	icator					Ap	ply	
MAP	PING WI	TH	PROG	GRAM	IME OU	JTCO	MES	AND	PRO	GRAM	ME SP	ECII	FIC (OUTC	COMES	
CO S	PO1	P 0 2	PO 3	PO 4	PO5	PO 6	PO 7	PO 8	PO 9	PO 10	PO11	PO	D12	PS O1	PSO 2	PSO 3
CO 1	S	-	-	-	М	М	М	L	S	S	S]	Μ	L	-	-

CO 2	S	-	L	М	S	S	М	L	М	S	М	S	L	-	-
CO 3	L	L	-	L	S	М	-	L	М	S	-	L	L	-	-
CO 4	L	Μ	-	-	М	М	S	М	М	М	S	S	L	-	-
CO 5	S	Μ	L	-	L	-	S	М	S	S	L	М	L	-	-
CO 6	М	1	-	-	М	-	-	-	М	S	-	S	L	-	-
S-Str	ong; M-Me	ediu	m; L-1	Low											

SYLLABUS

UNIT – I: Self introduction - Simulations using E Materials - Whatsapp, Face book, Hiker, Twitter- Effective Communication with Minimum Words - Interpretation of Images and Films - Identify the different Parts of Speech- Word formation with Prefixes and suffixes -Common Errors in English - Scientific Vocabulary (definition and meaning) - Listening Skills- Passive and Active listening, Listening to Native Speakers - Characteristics of a good listener.

UNIT – II: Articles - Phonetics (Vowels, Consonants and Diphthongs) - Pronunciation Guidelines -Listening to Indian speakers from different regions, intrusion of mother tongue - Homophones – Homophones – Note taking and Note making - Difference between Spoken and Written English- Use of appropriate language - Listening and Responding to Video Lectures (Green India, environment, social talks) - Extempore.

UNIT – III Tense forms- Verbal and Non verbal Communication - Describing objects - Process Description-Speaking Practice - Paragraph Writing on any given topic (My favourite place, games / Hobbies / School life, etc.) -Types of paragraphs - Telephone Etiquettes - Telephonic conversation with dialogue.

UNIT – IV Impersonal Passive Voice - Conditional Sentences - Technical and Non technical Report Writing (Attend a technical seminar and submit a report) - News Letters and Editing - Skimming- Scanning - How to Improve Reading Speed - Designing Invitations and Poster Preparation.

UNIT – V Sentence Pattern (SVOCA) - Statement of Comparison - Transcoding (Flow Chart, Bar Chart and Pie Chart) - Informal letters - Resume Writing- Difference between Bio data, Resume and Curriculum Vitae. **TEXTBOOK**

1. English for Engineers- Faculty of English - VMKVEngineeringCollege, Salem and AVIT, Chennai

REFERENCES

- 1. English for Effective Communication, Department of English, VMKV & AVIT, SCM Publishers, 2009.
- 2. Practical English Usage- Michael Swan (III edition), Oxford University Press
- 3. Grammar Builder- I, II, III, and CambridgeUniversity Press.
- 4. Pickett and Laster. Technical English: Writing, Reading and Speaking, New York: Harper and Row Publications, 2002.

Cou	rse Designers:			
S.N	o Name of the Fa	culty Designation	Department / Name of the College	Mail ID
1	Dr.P.Saradha	Professor	English / VMKVEC	saradhap@vmkvec.edu.in

17EGHS02	BUSINESS ENGLISH	Category	L	Т	Р	C	
17EG11502		HSS	3	0	0	3	

Preamble

Language is one of the most valued possessions of men. It acts as a repository of wisdom. Among all other languages English, the international language plays a vital role as a propeller for the advancement of knowledge in different fields and as a telescope to view the dream of the future

Prerequisite

Nil	

Course Objectives

Course	Objec	uves													
1	To im	part an	d enha	nce cor	porate o	commu	inicatio	on.							
2	To en	able lea	arners t	o devel	op pres	entatio	on skill	s.							
3								in Busir	ness con	itext.					
				ts in pro											
								g in all i		f comn	nunicati	on			
	<u> </u>	<u>^</u>	ents wi	th emp	loyabili	ity and	l job se	arching	skills						
Course															
After Su														 -	
CO1.		Communicate with a range of formal and informal context													tand
CO2.		Students will undergo in activities, demonstrating interaction skills and consider how own Apply													
		communication is adjusted in different scenario													
CO3.	Strengthening of oral and written skills in the business contextApplyCreate interest among the students about a topic by exploring thoughts and ideasUnderstand														
CO4.	Create interest among the students about a topic by exploring thoughts and ideas Make the students to start with pleasing note and make them to give different ideas														
CO5.	Mak	the st	tudents	to star	t with j	pleasin	ig note	and ma	ake then	n to giv	e diffe	rent ide	eas	Apply	
CO6.	Mak	te them	in bett	er perfo	ormanc	e in the	e art of	commu	inicatio	n				Apply	
Mappin	ig with	Progr	amme	Outco	mes an	d Prog	gramm	ie Speci	ific Out	comes				•	
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2	PSO 1	PSO2	PSO3
CO1	L	M	Μ	-	Μ	L	Μ	Μ	Μ	S	-	М	-	-	-
CO2	L	-	-	L	-	Μ	-	-	-	S	Μ	L	-	-	-
CO3	-	L	Μ	-	-	-	L	-	Μ	S	-	-	-	-	-
CO4	Μ	Μ	-	-	L	S	-	Μ	S	S	-	L	-	-	-
CO5	Μ	-	-	-	-	Μ	-	Μ	Μ	S	-	-	-	-	-
CO6	S	Μ	Μ	-	-	S	Μ	-	-	S	-	-	-	-	-
S- Stron	a. MA	Andium	. I I o	***											

S- Strong; M-Medium; L-Low

Syllabus

SUBJECT -VERB AGREEMENT

Subject and Verb Agreement (concord) - Preposition and Relative Pronoun - Cause and effect - Phrasal Verbs-Idioms and phrases-Listening Comprehension -Listening to Audio Files and Answering Questions-Framing Questions-Negotiation Skills-Presentation Skills and Debating Skills.

STRESS

Stress (Word Stress and Sentence Stress) Intonation- Difference between British and American English Vocabulary-Indianism-Compound Words (including Technical Terminology).

READING SKILLS

Reading Skills-Understanding Ideas and making Inferences-Group Discussion-Types of Interviews – FAQs – E - Mail Netiquette - Sample E – mails - Watching Documentary Films and Responding to Questions.

CORPORATE COMMUNICATION

Corporate Communication -Recommendation-Instruction-Check List- Circulars-Inter Office Memo- Minutes of Meeting and Writing Agenda - Discourse Markers - Rearranging Jumbled Sentences - Technical Articles - Project Proposals-Making Presentations on given Topics -Preparing Power Point Presentations.

CRITICAL READING

Critical Reading-Book Review-Finding Key Information and Shifting Facts from Opinions-Business Letters (Calling for Quotation, Placing Orders and Complaint Letters) - Expansion of an Idea-Creative Writing.

TEXT BOOK:

1. English for Effective Communication - Faculty of English – VMKV Engineering College, Salem and AVIT, Chennai

REFERENCES:

- 1. Grammar Builder I, II, III Cambridge University Press.
- 2. Technical English Writing, Reading and Speaking Pickett and Lester, Harper and Row

	e Designers:			
S.No	Name of the Faculty	Designation	Department/College	
1	Dr. P. Saradha	Associate Professor	English / VMKVEC	saradhap@vmkvec.edu.in
2				
3				
4				

17E	GHS81		ENG	GLISH	LANG	GUAGE	LAB		C	ategory]	L	Т	Р	Cr	edit
									F	C(HS)		0	0	4		2
										idents.] nd comi						ning
PRE	REQUI	SITE -	- NIL													
τοι	RSE O	BJEC	FIVES													
1	To und	lerstand	l comm	unicatio	on nuis	ances ir	the co	rporate	sector	•						
2	To und tongue.	lerstand	the rol	e of mo	other to	ngue in	second	langu	age lea	rning an	d to ave	oid i	nterf	erenc	e of mo	ther
3	To con	nmunio	cate eff	ectively	throug	gh differ	ent acti	vities								
4						one eti										
5	Case s	tudy to	unders	tand th	e practi	cal aspe	ects of c	commu	nicatic	n						
6			he oral	skills o	f the stu	udents										
	IRSE O															
	ne succe		<u> </u>													
	Give b	_		-	-									dersta	nd	
	Best pe								eaking	•			Ap	<u> </u>		
CO3	Give b	etter jo	b oppoi	tunities	s in cor	porate c	ompani	les					Ap	ply		
					nuances	s of E	nglish	langua	ge thr	ough au	udio-vis	ual	Ap	ply		
	rience a															
				th clar	ity and	d confi	dence	which	in tu	rn enha	nces th	leir	Un	dersta	nd	
	oyabilit Acquir			netenc	e to 1156	hoth s	noken a	nd wri	tten la	nguage	in a wie	le	Ap	nlv		
	e of com					c oour s	portent	ina wii	tten nu	iguuge	111 u VI		1 · P	P19		
						TCOM	IES AN	D PR	OGRA	MME	SPECII	FIC	OU	ГCON	AES	
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO	PO	PO1	PO1	PC	012	PSO		PS
$\frac{S}{CO}$		S	М	S	_	L		8	9 S	0 S	1 M		-	L	2	03
1	-	3	IVI	3	-	L	-	-	3	3	101		-	L	-	-
CO 2	М	-	-	-	-	-	-	-	М	S	-	N	Л	L	-	-
CO 3	М	-	-	-	-	-	-	-	-	S	-	N	Л	L	-	
CO 4	М	-	-	-	-	-	-	-	-	М	-		-	L	-	-
CO 5	М	-	-	S	-	-	-	-	-	М	-		-	L	-	-
CO 6	-	М	М	-	-	-	-	-	-	М	-		-	L	-	-
S- St	rong; M	-Mediu	ım; L-L	.OW												

SYLLABUS

UNIT – I: Ice Breaker, Grouping, Listening- (Hearing and listening)- Active Listening- Passive Listening – Listening to a song and understanding- (fill in the blanks) Telephone Conversation

UNIT – II: Influence of mother tongue, videos, understanding nuances of English language (video) puzzle to solve, Activity.

UNIT – III Why is English important, Communication skills, TED (video) Communication in different scenario – a case study, ingredients of success, Activity – chart, speak the design, feedback on progress, Group wise, Individual.

UNIT IV. Telephone Etiquette, Dining Etiquette, Meeting Etiquette.

UNIT V. Case study of Etiquette in different scenario.

COURSE DESIGNERS

S.No.	Name of the Faculty	Designation	Department / Name of the College	Email id
1.	Dr. P.Saradha	Professor	English / VMKVEC	saradhap@vmkvec.edu.in
2.	Dr. Jennifer G Joseph	Professor	English / AVIT	Jennifer@avit.ac.in

VINAYAKA MISSION RESEARCH FOUNDATION

AARUPADAI VEEDU INSTITUTE OF TECHNOLOGY, PAIYANOOR

YOGA AND MEDITATION

SYLLABUS- 2018-19

UNIT - I SURYA NAMASKAR AND ASANAS

SuryaNamaskar, Padmasana, Vajrasana, Navasana, Bhujangasana, Dhanurasana, TriKonasana, Uttakatasana, Eka pada pranamasana, Pirai Asana, Padha Hasthasana, Savasana.

Γ-ΙΙ PRANAYAMA

Surya pranayama, Chandra Pranayama, Anulom Vilom, Sheetali, Brahmari Pranayama.

UNIT - III MUDRA

Chin mudra, Rughi mudra, Yoga mudra, Maha mudra, Shanmukhi mudra.

UNIT - IV KRIYA

Kapalabathi, Bhastrika.

UNIT - V MEDITATION

Simple, Vibrational, Mantra, Yoga Nitra

References:

- 1. Dr.V.Krishnamoorthy, Simple Yoga for Health, Sri Mathi Nilayam, 2012.
- Dr.Ananda Balayogi Bhavanani, A Primer of Yoga Theory, Dhivyananda Creations, 2008.
- 3. Dr.S.Hema, Easy Yoga for Beginners, Tara yoga Publications, 2008.
- 4. Dr.Asana Andiappan, Ashtanga Yoga, Asana Publications, 2009.
- 5. Yogacharya Sundaram, Sundra Yoga Therapy, Asana Publications, 2009
- 6. Dr.John B.Nayagam, Mudumaikku Mutrupulli Vaikkum Muthiraigal, Saaru Prabha

-	17MBH	IS04		T	OTAL	QUAL	ITY		Cate	egory	L	Т		Р	Credit
				Ν	MANA	GEME	NT	F	Н	SS	3	0)	0	3
PREA	MBLI	E:											l		
Fotal	Quali	ty Man	ageme	nt (TQI	M) is a	a mana	gement	approa	ch des	cribes	to lon	g–tern	n suc	ccess	s through
custor	ner sati	sfactior	and, is	an inte	grative	philoso	ophy of	manage	ement f	or con	tinuous	ly imp	orovii	ng tl	ne quality
of pro	ducts a	nd proc	esses.												
PREF	REQUI	SITE: 1	Not Req	uired											
COU	RSE O	BJECT	IVES:												
	1. To	unders	tand the	introdu	uction a	bout Q	uality ar	nd Total	Qualit	y Man	agemer	nt.			
	2. To	unders	tand the	TQM	principl	es.									
	3. To	unders	tand the	statisti	cal pro	cess cor	ntrol								
	4. To	impart	the vari	ious TQ	M tool	S									
	5. To	unders	tand the	quality	y system	ns.									
COU	RSE O	UTCO	MES:												
After	success	ful com	pletion	of the c	ourse, s	students	s will be	able to)						
	CO1	Under	stand th	ne impo	rtance o	of quali	ty and T	QM at	manage	erial le	vel.		Unc	derst	and
	CO2	Expla	in the re	equired	tools to	impler	nent TÇ	M.					App	oly	
	CO3	Analy	se varic	ous TQN	A paran	neters w	vith help	o of stat	istical t	ools.			Ana	alysi	ng
	CO4	Evalu	ating va	rious T	QM Te	chnique	es						Eva	luat	e
	CO5	Propo	se the Q	Quality I	Manage	ment S	ystems	in a diff	erent				App	oly	
		organiz	ation en	vironm	ent										
Μ	APPIN	G WIT	TH PRC	OGRAN	AME O	OUTCO	MES A	ND PR	ROGRA	AMME	E SPEC	CIFIC	OUI	ГСС	MES
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1	P	S	PSO2
										0	1	2	0	1	
СО	М	L	L	L	L	L	L	L	L	М	L	L			
1															
CO	S	S	М	L	М	L	L	М	М	L	L	L			
2															
СО	S	S	S	M	S	М	L	М	M	L	L	М		Ţ	
3															
CO	М	S	S	L	М	L	L	М	M	L	L	М			
4															
CO	S	S	S	L	М	М	S	М	М	S	Μ	S			
5						1	1	1			1	1	1	1	

SYLLABUS:

INTRODUCTION

Quality: Definition - Dimensions - Planning- costs – Analysis Techniques for Quality Costs- Basic concepts of Total Quality Management- Historical Review- Principles - Leadership – Concepts- Role of Top Management- Quality Council – Quality Statements- Strategic Planning- Deming Philosophy- TQM Implementation – Barriers.

TQM PRINCIPLES

Customer satisfaction – Perception of Quality- Complaints- Service Quality- Customer Retention- Employee Involvement – Motivation- Empowerment - Teams- Recognition and Reward- Performance Appraisal-Benefits- Continuous Process Improvement – Juran's Trilogy- PDSA Cycle- 5S – Kaizen - Basic Concepts.

STATISTICAL PROCESS CONTROL (SPC)

The Seven tools of Quality- Statistical Fundamentals – Measures of central Tendency & Dispersion-Population and Sample- Normal Curve- Control Charts for variables and attributes- Process capability-Concept of six sigma- New seven Management tools.

TQM TOOLS

Benchmarking – Reasons - Process- Quality Function Deployment (QFD) – House of Quality- QFD Process-Benefits- Taguchi Quality Loss Function- Total Productive Maintenance (TPM) – Concept- Improvement Needs- FMEA – Stages of FMEA.

QUALITY SYSTEMS

Need for ISO 9000 and Other Quality Systems- ISO 9000:2000 Quality System – Elements- Implementation of Quality System- Documentation- Quality Auditing- QS 9000- ISO 14000 – Concept- Requirements and Benefits.

TEXT BOOKS:

- 1. Dale H.Besterfiled- et at. Total Quality Management- PHI-1999. (Indian reprint 2002).
- 2. Feigenbaum.A.V. "Total Quality Management- McGraw-Hill- 1991.

REFERENCES:

- James R.Evans & William M.Lidsay The Management and Control of Quality- (5th Edition) South-Western (Thomson Learning) - 2002 (ISBN 0-324-06680-5).
- 2. Oakland.J.S. "Total Quality Management Butterworth Heinemann Ltd Oxford. 1989.
- 3. Narayana V and Sreenivasan N.S. Quality Management Concepts and Tasks- New Age International 1996.

COURS	SE DESIGNERS:			
S.No	Name of the Faculty	Designation	Department	Mail ID
1	A. Mani	Associate Professor	Management Studies	asmanimba@gmail.com
2	B. Rajnarayanan	Assistant Professor	Management Studies	Rajsachin.narayanan@gmail.com

17M	BHS07	,	PRC		IONAL MAN V		·) (Categor	y L]	Г	Р	Credit
1/1/1	DIIGO			nor			,		HSS	3	()	0	3
PREAM	BLE: I	PV & H	V									I		
'Professi	onal eth	nics and	Human	values	' is a ve	ry relev	vant sul	oject of	today'	s enviroi	nment o	of confli	icts an	d stress
in the pr	ofession	n, with	obligatio	ons to b	be met b	by one	person	in mar	ny direc	ctions. A	forma	l study	will c	ertainly
improve														
the famil	• •				•		icians e	even fe	el that	this subj	ject sho	ould be	introd	uced in
high scho					instructi	ions.								
PRERE	-			d										
COURS	-													
1. To u	ndersta	nd the ba	asic con	cept of	Human	Values	and Et	hics.						
										c placeetl	hics.			
	-		code of e		-		-		-					
4. To u	ndersta	nd apply	the righ	nts, lega	ıl, ethica	al issues	s and th	eir resp	onsibil	ities.				
5. To M	lotivate	and pra	ictice eth	nical res	sponsibi	lities of	f a prof	essiona	l engine	eer.				
COURS														
After suc														
CO1: Un	derstan	ding the	moral v	alues tl	hat ough	nt to gui	ide eng	ineering	g profes	ssion or p	practice	•	Under	stand
CO2: Un						<u> </u>	0						Under	stand
CO3: In													Apply	
CO4: As	ssessing	and eva	aluating	the Saf	ety, Qua	ality Ma	anagem	ent and	l Risk a	nalysis			Analy	se
CO5: Ga	ining ar	nd apply	ring the s	skills ar	nd know	ledgetc	solve	the cont	tempora	ary issue	s.		Analy	se
МЛАТ	DDING	WITTI	DDOC		IF OUT	COM			CDAN	1ME SP	FCIEI	COUT	COM	FC
MA	PPING	WIIN	PKUG	KAWI	IE UUI		LS AN	DPKO	GKAN	INIE SP	LCIFI		COM	L9
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1	PO12	PS	PSO2
											1		01	
CO1	S	L	L	L	L	S	S	М	М	М	L	М		
001		М	М	L	L	S	L	S	S	М	L	L		
CO2	S	Μ	111	1										
	S S	M S	M	L	L	М	L	М	S	L	М	М		

S- Strong; M-Medium; L-Low

S

SYLLABUS:

CO5

Introduction to HUMAN VALUES

S

Μ

L

Morals, values and Ethics – Integrity – Work ethic – Service learning – Civic virtue – Respect for others – Living peacefully – Caring – Sharing – Honesty – Courage – Valuing time – Cooperation – Commitment – Empathy –Self-Confidence–Discrimination -Character – Challenges in the work place -Spirituality –and stress management.

S

S

L

Μ

М

S

Μ

L

Overview of Engineering Ethics

Senses of 'Engineering Ethics' – Variety of moral issues – Moral Dilemmas- moral autonomy - Kohlberg'stheory-Gilligan'stheory-consensusandcontroversy-Profession – Types of Profession- Models of professional roles – Theories about right action – Self- Respect- Self-interest – Customs and Religion – Uses of Ethical Theories–Religion - Case study: Choice of the theory

Engineering as Social Experimentation

Engineering as Experimentation – Engineering Projects VS. Standard Experiments - Engineers as responsible Experimenters – Codes of Ethics – anticorruption-A Balanced Outlook on Law.

SAFETY, RESPONSIBILITIES AND RIGHTS

Safety and Risk - Assessment of Safety and Risk - Risk Benefit Analysis and Reducing Risk - Respect for Authority – Collective Bargaining – Confidentiality – Conflicts of Interest – Occupational Crime – Professional Rights - Employee Rights - Intellectual Property Rights (IPR) - Discrimination

GLOBAL ISSUES

Transnational and MNC corporations-Environmentalethics-Computerethics-Weaponsdevelopment and Ethical for Engineers in creation-Engineers as managers-Consulting engineers-Engineers stand as expertwitnessesandadvisorsEthical Responsibilities of a Professional Engineer as an Expert Witness -Moral Leadership –Code of Conduct – Corporate Social Responsibility Case Studies

TEXT BOOK:

- 1. Mike W. Martin and Roland Schinzinger, "Ethics in Engineering", Tata McGraw Hill, New Delhi, 2003.
- 2. Govindarajan M, Natarajan S, Senthil Kumar V. S, "Engineering Ethics", Prentice Hall of India, New Delhi, 2004.
- 3. R.S. Nagarajan, A Text Book on Professional Ethics and Human Values, New Age International (P) Limited, Publishers, 2006

REFERENCES:

- CharlesD.Fleddermann,"EngineeringEthics",PearsonEducation/PrenticeHall,NewJersey, 1 2004
- CharlesEHarris, MichaelS. ProtchardandMichaelJRabins, "EngineeringEthics-Concepts 2. and Cases", WadsworthThompson Leatning, United States, 2000
- John R Boatright, "Ethicsandthe ConductofBusiness", PearsonEducation, NewDelhi, 2003. 3.
- EdmundGSeebauerandRobertLBarry,"FundamentalsofEthics forScientistsandEngineers", 4. Oxford Press, 2000
- R.Subramanian,"Professional Ethics", Oxford University Press, Reprint, 2015. 5.

<u>COURS</u>	E DESIGNERS:				
S.No	Name of the Faculty	Designation	Department	mail id	
1	Dr. P. Marishkumar	Associate Professor	Management Studies	marishkumarp@vmkvec.edu.in	
2	M. Manickam	Associate Professor	Management Studies	manickamannu@rocketmail.com	

COUDCE DEGLOVEDO

	MBHS	08	PR	OJEC	r man	IAGEN	MENT]	FOR	Ca	tegory	L	Т	Р	Credit
			I	ENGIN	EERI	NG BU	JSINES	SS]	HSS	3	0	0	3
				ANI) TEC	HNOL	OGY							
PREAN	IBLE:													
Project	Manage	ement f	or Engi	neering	g Busir	ness and	d Techi	nology	is a ma	anageme	nt appro	oach de	escribes to	o long–
term su	ccess o	of proje	ct thro	ugh ex	pertise	in pro	oject ob	ojective	s and	project	Evalua	tion To	echniques	s, is an
integrati	ve of B	usiness	and Te	chnolo	gy for	enjoyin	ig adva	nced co	oncepts	and resu	ults.			
PRERE	QUISI	TE: No	ot Requ	ired										
COURS	SE OBJ	ECTIV	/ES:											
	1. To	underst	and the	Projec	t Mana	igemen	t basics	•						
	2. To	underst	and the	differe	ent man	agerial	activit	ies of l	Project	Manage	ment			
	3. To	underst	and the	Engin	eering '	Techno	ology.							
	4. To	impart	the vari	ous Ri	sks inv	olved in	n projec	et mana	gement	t.				
	5. To	underst	and the	impor	tance o	f variou	us quali	ty for H	Project	Manager	•			
COURS	SE OUT	ГСОМ	ES:											
After su	iccessfi	ıl comp	letion	of the c	course,	studer	nts will	be abl	e to					
CO1: E	xplain t	the cond	cept of	projects	s, its pr	ocess, o	objectiv	ves and	functio	ons of pro	oject		Understa	nd
n	nanager	nent												
CO2: A	nalyze	and Ma	nage ti	me in p	rojects	throug	h Gantt	charts	, CPM a	and PER	Т		Apply	
te	echniqu	es												
CO3: B	alance	resourc	e requi	rements	s of pro	jects sc	as to a	void id	ling of	resource	es		Apply	
CO4: U	pdate p	orojects	and det	ermine	revise	d sched	lule of a	activitie	es and c	ritical particul	ath		Apply	
it	any													
CO5: C	rash pr	ojects to	o deterr	nine its	optim	um time	e- minii	mum co	ost relat	tionships	5		Apply	
MA	PPING	WITH	I PRO	GRAM	IME O	UTCO	MES A	AND P	ROGR	AMME	SPECI	FIC O	UTCOM	ES
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO_{0}	roi	-	-	-	-	M	S	S	-	M	-	-	. 1501	1302
COs	М		-	-	-		3		-					
CO1	M		C	М	М	М				-	-	-		
CO1 CO2	S	S	S	M	M	M	-	-	-					
CO1 CO2 CO3	S S	S S	S	М	М	М	-	-	-	-	-	-		
CO1 CO2	S	S							-	-	-	-		

SYLLABUS:

Project and its process- Define project and process, boundaries of project, Objectives and functions of Project management, characteristics and types of projects, organization structure / styles, roles of project management group, project management office and its role, project knowledge area, project integration- process group interaction. Project flow, project life cycle- influencing factors.

Project Time Management: Project Scope Management - Work break down structure- Activity/ Task- Events - Project planning tools- Rolling wave planning. Gantt Charts, Milestone chart, Program Progress chart-Creating milestone plan. Project Network- Fulkerson's rules – A-O-A and A-O-N networks. Analyze project time- Critical path method (deterministic approach- activity oriented network analysis- 80-20 rule- Case study, type of time estimates & Square network diagram. Project updating and monitoring- Case study. Estimate time-Program Evaluation & Review Technique (Probabilistic Approach)- Event oriented network analysis-Optimistic, Pessimistic and Most likely time, Degree of variability in average time, Probabilistic estimate, % utilization of resources.

Resource Management: Types of resource- Time, Men, Material, Machinery, Money, Space. Balancing of resource- Resource Smoothing technique- Time constraint. Resource levelling technique- Resource constraint.

Resource optimization: Types of cost – Direct, Indirect and Total Cost. Variation of Cost with time. Schedule Compression Techniques- Crashing, Fast Tracking & Re-estimation- Crash time and crash cost. Optimize project cost for time and resource. CPM Cost model. Life cycle assessment- impacts and economical assessment, Life cycle cost- maintenance and operation, life cycle forecasting – concept and applications.

Emerging trends in project management: Agile Project management and Project Management using latest tools.

Text Book:

- 1. Samuel J.Mantel JR., Jack R.Meredith, Project Management, Wiley India, Edition 2006.
- 2. Larry Richman-Project Management step by step, PHI New Delhi, Edition 2008.

Reference Books:

- A Guide to the Project Management Body of Knowledge (PMBOK Guide) Fourth Edition, An American National Standard, ANSI/PMI 990001-2008
- 2. James P.Clemats and Jack GIGO, Effective Project Management, Thomas South- Western, Edition 2007.
- 3. Santakki.V.C., Project Management, Himalaya Publishing House, Edition 2006.
- 4. Bhanesh M.Patel, Project Management, Vikash Publishing House Pvt Ltd, Edition 2008.
- Project Management, Jack Gido and James P Clements, (Edition 2009) Cenage Learning India pvts Ltd., New Delhi.
- 6. A Risk Management Standard, AIRMIC Publishers, ALARM, IRM: 2002
- 7. Jerome D. Wiest and Ferdinand K. Levy, "A Management Guide to PERT/CPM", Prentice Hall of India

Publishers Ltd., New Delhi, 1994.

- 8. Punmia B. C. and Khandelwal K.K., "Project Planning and Control with PERT/CPM", Laxmi publications, New Delhi, 1989.
- Srinath L.S., "PERT & CPM- Principles and Applications", Affiliated East West Press Pvt., Ltd., New Delhi, 2008

COURSE DESIGNERS:

S.No	Name of the Faculty	Designation	Department	Mail ID
1	A. Mani	Associate Professor	Management Studies	asmanimba@gmail.com
2	Dr. G. Murugesan	Professor	Management Studies	selvasahana.m@gmail.com

17MBHS0	0				ROPERT		Catego	ry L	. Т	Р	Credit
1////0150	9				LUTION		HSS	3	0	0	3
PREAMBLE:	IPR & A										
Intellectual Pro	perty Ri	ghts are	valuable	e assets	and most	importa	nt for ar	y kind	of busin	ess beca	use set the
business apart											
essential part of	marketi	ng or br	anding.	ADR is	a familiar	mechan	ism to re	solve th	e busine	ss issue	s in a faster
way and less ex	pensive	with hel	p of a ne	utral thi	rd party.						
PREREQUISI	TE: Not	Require	ed								
COURSE OBJ	ECTIV	ES:									
1. To understa	and and l	earn the	basic co	ncept of	IPR and I	Patent fil	ling proc	edure.			
2. To understa							<u> </u>		and trac	le secret	s.
3. To apply va					Ŭ						
4. To apply ar		/ <u> </u>						s.			
5. To Create n				<u> </u>		<u> </u>					
COURSE OUT			1								
After successfu	l comple	tion of t	he cours	e, studer	nts will be	able to					
CO1: Understa							ts.			Unde	erstand
CO2: Explain the								ment ar	nd relate	d App	ly
system in India					11 2		1				-
CO3: Analyse	the var	ious is	sues of	transfer	of pate	nt owne	ership w	ith refe	erence to	o Anal	yse
International Pa							ľ				•
CO4: Evaluat	the p	resent s	ystem o	f Paten	t Act in	India a	nd chang	ges alig	ned with	h Eval	uate
international sta	-										
CO5: Prepare	and asse	ss the n	nechanis	m to ap	ply in the	busines	s issues	in the c	ontext o	f Crea	te
ADR				•							
MAPPING	WITH	PROGR	AMME	COUTC	OMES A	ND PRO	OGRAM	IME SP	ECIFIC	COUTC	COMES
COs PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
COS POI CO1 M	L	L	L PO4	L	L L	M	L	P09 L	M	L	L
CO2 S	S	М	L	М	L	L	Μ	М	L	L	L
CO3 S	S	М	М	S	М	L	S	М	L	L	М
CO4 M	S	S	L	М	L	L	М	М	L	L	М

S- Strong; M-Medium; L-Low

S

S

S

L

Μ

SYLLABUS:

CO5

UNIT – I: Introduction To IPRs

Basic concepts of Intellectual Property- Patents Copyrights, Geographic Indicators, History of IPRs- the way from WTO to WIPO- TRIPS, Nature of Intellectual Property, Industrial Property, Technological Research, Inventions and Innovations - Defining Intellectual Property and Patents, Patent Searches and Application.

Μ

S

S

Μ

L

Μ

UNIT - II: New Developments in IPR

Procedure for grant of Patents, TM, GIs, Trade Secrets, Patenting under PCT, Administration of Patent system in India, Patenting in foreign countries - International Treaties and conventions on IPRs, The TRIPs Agreement.

UNIT – III: Patent Ownership and Transfer

Defining Intellectual Property and Patents, Patent Searches and Application, Patent Ownership and Transfer, Patent Infringement, New Developments and International Patent Law

UNIT – IV: Legislation of IPRs

9

9

S

9

9

The Patent Act of India, Patent Amendment Act (2005), Design Act, Trademark Act, Geographical Indication Act, Bayh- Dole Act and, IPR strength in India - Patent Ownership and Transfer, Patent Infringement, New Developments and International Patent Law

UNIT – V: Alternate Dispute Resolution

9

Alternate Dispute Resolution and Arbitration – ADR Initiatives - Reason for Choosing ADR – Advantages and Disadvantages of ADR – Assessment of ADR's – Litigation – Arbitration - Effective Mechanism for Business Issues.

TEXT BOOK:

1. Deborah E. Bouchoux, Intellectual Property Rights, Delmar, Cengage Learning, 2005.

REFERENCES:

- 1. V. Sople Vinod, Managing Intellectual Property by (Prentice hall of India Pvt.Ltd), 2006.
- 2. A. Primer, R. Anita Rao and Bhanoji Rao, Intellectual Property Rights, Lastain Book company. Edited by Derek Bosworth and Elizabeth Webster, The Management of Intellectual Property, Edward Elgar Publishing Ltd., 2006.
- 3. Tejaswini Apte, A single guide to Intellectual property rights, Biodiversity and Traditional knowledge.
- 4. WIPO Intellectual Property Hand book.
- 5. Intellectual Property rights and copyrights, Ess Ess Publications.

COURS	SE DESIGNERS:			
S.No	Name of the Faculty	Designation	Department	mail id
1	G. Palaniappan	Associate Professor	Management Studies	palaniappan@vmkvec.edu.in
2	B. Rajnarayanan	Assistant Professor	Management Studies	rajsachin.narayanan@gmail.com

ENGINEERING STARTUPS AND ENTREPRENEURIAL MANAGEMENT

Category	L	Т	Р	Credit
HSS	3	0	0	3

PREAMBLE:

A startup is a company initiated by individual creator or entrepreneurs to search for a repeatable and scalable business model. More specifically, a startup is a newly emerged business venture that aims to develop a viable business model to meet a marketplace needs or wants in an optimum manner.

PREREQUISITE: Not Required

COURSE OBJECTIVES:

- 1. To understand the Startups Management basics and its components.
- 2. To impart the startups fund management practices
 - 3. To inculcate the various kinds of stocks and employment considerations in startups.
 - 4. To inculcate the importance of intellectual property rights and its procedures.
 - 5. Explore the entrepreneurial mindset and culture that has been developing in companies of all sizes and industries.

COURSE OUTCOMES:

After successful completion of the course, students will be able to	
CO1: Explain the concept of engineering startups, objectives and functions and its	Understand
components.	
CO2: Analyze the startups funding issues and remuneration practices in startups	Apply
business.	
CO3: Analyze the various kinds of stocks and employment opportunities consideration	Apply
in startups business.	
CO4: Compare and contrast the different forms of intellectual property protection in	Apply
terms of their key differences and similarities.	

CO5: Explore the entrepreneurial mindset and culture that has been developing in Apply companies of all sizes and industries.

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	РО	РО	PS	PSO2	
										0	11	12	01		
CO1	М	-	-	-	-	М	S	S	-	М	-	-			
CO2	S	S	S	М	М	М	-	-	-	-	-	-			

CO	3	S	S	S	М	М	М	-	-	-	-	-	-		
CO	4	S	S	S	М	М	М	-	-	-	-	-	-		
CO	5	S	S	S	М	М	М	-	-	-	-	-	-		

S- Strong; M-Medium; L-Low

SYLLABUS:

Elements of a successful Start up: Create Management Team and Board of Directors – Evaluate market and Target Customers – Define your product or service –Write your Business Plan

Funding Issues and Remuneration Practices: Funding Issues: Investment Criteria – Looking for seed cash – Seed, Startup, and subsequent Funding Rounds – Milestone Funding - Remuneration Practices for your Start –up : Salaries – Headhunters – Equity Ownership – Form of Equity incentive vehicles – Other compensation – Employment Contracts

Stock Ownership & startup Employment Considerations: Stock ownership: Risk-Reward Scale – Ownership Interest over time – Common and preferred stock – Authorized and outstanding shares – Acquiring stock – Restricted Stock Grants – Future Tax Liability on Restricted Shares - Compensation and startup Employment Considerations : Entrepreneurs Need Insurance – Do Fringe benefits – outsourcing your benefits work – Life Insurance – Health Insurance – Disability Insurance

Protecting Intellectual Property: Protecting your intellectual property: Copyrights - patents–Trade secrets – Trademarks - The Legal Form of your Startup: Corporation – Partnership – Limited Liability Company – Sole Proprietorship - – Making the startup decision: commitment – Leaving a current employer - stay fit.

Entrepreneurship: Entrepreneurship - Introduction to Technology Entrepreneurship and Technology Ventures – Engineers as Entrepreneurs, The Mindset of the Entrepreneurial Leader, Creating and Selling the Entrepreneurial Value Proposition - Essentials of Successful Entrepreneurs – Social environment in entrepreneurial development – Economic environment in entrepreneurial development.

Text Book:

- 1. James A. Swanson & Michael L. Baird, "Engineering your start-up: A Guie for theHigh-Tech Entrepreneur" 2nd ed, Professional Publications.inc
- 2. Donald F Kuratko, "Entreprenuership Theory, Process and Practice", 9th Edition, Cengage Learning 2014.

Reference Books:

- 1. Hisrich R D, Peters M P, "Entrepreneurship" 8th Edition, Tata McGraw-Hill, 2013.
- 2. Mathew J Manimala, "Enterprenuership theory at cross roads: paradigms and praxis" 2nd Edition Dream tech, 2005.

- 3. Rajeev Roy, 'Entrepreneurship' 2nd Edition, Oxford University Press, 2011.
- 4. EDII "Faulty and External Experts A Hand Book for New Entrepreneurs Publishers: Entrepreneurship Development", Institute of India, Ahmadabad, 1986.

COURS	SE DESIGNERS:				
S.No	Name of the Faculty	Designation	Department	Mail ID	
1	Dr. G. Palaniappan	Asso. Professor	Management Studies	Palani.sunn@gmail.com	
2	Dr. G. Murugesan	Professor	Management Studies	<u>selvasahana.m@gmail.c</u>	<u>om</u>

BASIC SCIENCES -Syllabus

17CH	BS01		Env	ironm	ental	Scien	ce &	(Categ	ory	L	Т	Р		С
				Eng	gineer	ing			FC(B	S)	3	0	0		3
Pream Enviro biologio social s social r improvi	nmen cal, in cience elated ing en	form es fo pro viro	nation r unde blems	andatr erstand s Envi	nosph ing hu ironm	eric s iman ental	cience relatio engine	es. E onship eering	nviro s and	nmenta a solut	l stud	ies als the e	o inc nviro	orpora	ate the tal and
NIL	uisite														
Course	e Obje	ctiv	e												
1 T	o crea	te th	e awa	reness	of env	vironr	nent s	tudies	s and i	its scop	e				
2 T	To inculcate the knowledge of significance and conserving the natural resources.														
3 T	To helps the learners to know the value of ecosystem and food chain.														
4 T	To assess the importance of biodiversity														
5 T	o fam	iliari	zes th	e diffe	rent p	ollutio	on sou	irces,	conse	quence	s and	its coi	ntrol 1	neasu	res.
6 T	o edu	cate	the wa	ays and	mear	ns to r	nanag	e nati	iral ca	lamitie	s.				
7 T	o help	the	learne	ers to k	now t	he urb	oan en	ergy	related	d proble	ems ai	nd soc	ial iss	sues.	
Course	Outo	ome	es: On	the su	iccess	ful co	omple	tion o	of the	course	, stud	ents v	vill be	e able	to
CO1.				apprec of life s						all its	form	is, the	e Ur	nderst	and
CO2.				varenes l issues		recog	nize tl	he soo	cial re	sponsit	oility i	n	Aŗ	ply	
CO3.	Illu	strate	e the i	mporta	nce o	f ecos	ystem	and	biodiv	versity			Ap	oply	
CO4.	Inte	rpre	t the s	ociety	on the	e vario	ous po	llutio	ns and	their i	mpac	t.	Ap	oply	
CO5.	Der	nons	trate t	he Soli	id was	ste and	d disa	ster m	nanage	ement.			Ap	pply	
CO6.	Rec	ogni	ze the	issues	of en	viron	ment a	and su	istaina	able de	velopi	nent	Ur	nderst	and
CO7.	Sch	edul	e the ı	urban p	roble	ms an	d soci	al iss	ues.				Ap	oply	
Mappi	ng wi	th P	rogra	mme (Jutco	mes a	nd Pr	ogra	mme	Specifi	c Out	come	s		
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1 1	PO1 2	PSO 1	PSO 2	PSO3
CO1	S	М	L	-	-	S	S	S	-	-	-	S	L		
CO2	S	М	М	-	-	S	S	S	-	-	-	S	L		
CO3	S	L	М	-	-	S	S	S	-	-	-	S	L		
CO4	S	S	S	L	-	S	S	S	-	-	-	S	L		

CO5	S	S	S	М	-	S	S	S	-	-	-	S	L	
CO6	S	S	S	М	-	S	S	S	-	-	-	S	L	
CO7	S	S	S	М	-	S	S	S	-	-	-	S	L	

S- Strong; M-Medium; L-Low

Syllabus

ENVIRONMENT AND NATURAL RESOURCES

Environment - Definition, scope & importance - Public awareness- Forest resources, mineral resources, water resources, food resources, energy resources (uses, over -exploitation & adverse effects in each case) - Scope & role of environmental engineers in conservation of natural resources - Sustainability development.

ECOSYSTEMS AND BIO – DIVERSITY

Ecosystem - Definition, structure and function - Energy flow -Ecological succession - food chain, food web, ecological pyramids- Introduction, types, characteristics, structure and function of forest, grassland, desert and Aquatic ecosystems - Bio - Diversity :values and uses, hotspots, threats and conservation.

ENVIRONMENTAL POLLUTION

Pollution - Definition , man made impacts and control measures of air, water and land pollution - Water quality standards & characterization - Importance of sanitation -Nuclear hazards – Hazardous waste management : Solid waste, waste water and biomedical waste -Prevention of pollution and role of individual – Disasters management : Floods, earthquake, cyclone and land slides - Clean technology options.

SOCIAL ISSUES AND ENVIRONMENT

Urban problems related to energy - Water conservation – Resettlement and rehabilitation of people - Environmental ethics - Climate change - Global warming - Acid rain - Ozone depletion-Waste land reclamation, Environment Protection Act for air, water, wild life and forests - Pollution Control Board.

HUMAN POPULATION AND ENVIRONMENT

Population growth - Population explosion - Family welfare programme - Environment & human health - Human rights – Value education - Women and child welfare, Role of information technology in environment and human health.

Text Books

Reference Books

1 Wager K.D. "Environmental Management", W.B. Saunders Co. Philadelphia, USA, 1998

2	BharuchaErach "The Biodiversity of India" Mapin Publishing Pvt Ltd, Ahmedabad, India									
3	Trivedi R.K. "Hand Standards Vol I & J		ental Laws", Rules,	Guidelines,Compliances and						
4	Environmental Science and Engineering by Dr. J. Meenambal ,MJP Publication , Chennai Gilbert M. Masters : Introduction to Environmental Engineering and Science , Pearson Education PvtLtd., II Edition, ISBN 81-297-0277-0, 2004									
5	Miller T.G. Jr Environmental Science Wadsworth Publishing Co									
6	Townsend C. Harper J. and Michael Begon, Essentials of Ecology, Blackwell Science.									
Cours	e Designers									
S.No	Faculty Name	Designation	Department/Colleg e	Email id						
1	Dr.T.Shanthi	Professor	Chemistry / VMKVEC	shanthi@vmkvec.edu.in						
2	Dr. V.Anbalagan	Professor	Chemistry / VMKVEC	anbazagan@vmkvec.edu.in						
3	Dr. R. Nagalakshmi	Assoc. Prof.	Chemistry / AVIT							

	Subject Title	Category	L	Т	Р	С
17CHBS04	INDUSTRIAL MATERIAL	BS	3	0	0	3

PREAMBLE: The intellectual origins of materials from the Enlightenment, when researchers began to use analytical thinking from chemistry, physics and engineering to understand ancient, phenomenological observations in metallurgy and mineralogy. Materials science still incorporates elements of physics, chemistry, and engineering.

Prerequisite

Not required

Course Objectives

1	To impart fundamental knowledge relating to selection of material on basis of their application and service conditions.							
2	To classify the Engineering Materials and their relevant applications							
3	To Categorize the basics in composites, types and applications							
4	To demonstrate the various forms of Smart Materials and its applications.							
5	To lay foundation for applications of materials in various field.							
Course	Course Outcomes:							

After Successful completion of this course, the students will be able to:

CO1.	Account how for materials to be selected in industry	understand
CO2.	Identify engineering materials, their properties and applications	understand
CO3.	Summarize the properties and applications of composites	understand
CO4.	Illustrate the various forms of smart materials and its applications	Apply
CO5.	Predict the failure of components due to wrong selection of materials and extend their knowledge in applications of materials in various field	Analyze

Mapping with Programme Outcomes and Programme Specific Outcomes

COs	PO	РО	PO	PS0	PS0	PS0									
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1.	S	S	S	Μ	-	-	-	-	-	-		-	Μ	L	-
CO2.	S	S	Μ	L	-	-	-	-	-	-	-	-	L	-	-
CO3.	S	S	Μ	L	-	-	-	-	-	-	-	-	Μ	-	-
CO4.	S	Μ	Μ	L	-	-	-	-	-	-	-	-	Μ	-	-
CO5.	Μ	S	S	S	L	-	-	-	-	-	-	-	Μ	Μ	-

S- Strong; M-Medium; L-Low

SYLLABUS

UNIT I:

Selection of materials: Service requirement, Structure - Property correlations and reappraisal of the role of crystal structure and structural defects on properties.

UNIT II:

Metallic materials: Engineering Ferrous materials, Aluminium, Copper, Nickel, Magnesium, Titanium alloys. Phase diagrams, properties and typical alloys with reference to their applications.

UNIT III:

Composite materials: Fiber reinforced, laminated and dispersed materials with metallic matrix of aluminium, copper and Titanium alloys and with non-metallic matrix of unsaturated polyesters and epoxy resins (properties and applications of these materials).

UNIT IV:

Smart materials: Shape Memory Alloys, Varistors and Intelligent materials for biomedical applications, Polymers and Plastics from industry - properties and applications of these materials.

UNIT V:

Case study of the failure of components due to wrong selection of materials: Study and analysis of appropriate material for some specific application like aerospace, boiler tubes, turbine blades, automobiles and infrastructures (building and bridges).

TEXT BOOKS:

1.Engineering Material Technology, 5th edition, by James A. Jacobs & Thomas F. Kilduff. Prentice Hall. Copyright 2005.

2.Callister's Materials Science and Engineering by WD. Callister Jr., Wiley India Pvt. Ltd., 2010 **REFERENCE:**

1. Foundations of Materials Science and Engineering, 3rd edition, by William F. Smith. McGraw Hill, Copyright 2004.

2. Engineering materials1: An introduction to properties, applications and design by Michael F Ashby and David R H Jones, Elsevier Butterworth Heinmann Publishers, 2007

Course Designers:

S.No	Name of the Faculty	Mail ID
1.	Dr.T.Shanthi	Shanthi.thiruvengadam130@gmail.com

17MABS01	ENGINEERING MATHEMATICS	Categor y	L	Т	Р	Credit
		FC(BS)	2	2	0	3

PREAMBLE

The driving force in Engineering Mathematics is the rapid growth of technology and the sciences. Matrices have been found to be of great utility in many branches of engineering applications such as theory of electric circuits, aerodynamics, and mechanics and so on. Many physical laws and relations can be expressed mathematically in the form of differential equations. Based on this we provide a course in matrices, calculus and differential equations. Vector calculus is a form of mathematics that is focused on the integration of vector fields. An Engineer should know the Transformations of the Integrals, as Transformation of Line Integral to surface and then to volume integrals.

PREREQUISITE

NIL

COU	COURSE OBJECTIVES														
1	To r	ecall	the ad	lvance	d mat	rix kno	owled	ge to I	Engine	eering	prob	lems.			
2	To e	quip	thems	elves	famili	ar wit	h the f	unctio	ons of	severa	l var	iables	•		
3		mpro olems	ve the	eir abi	lity in	ı solvi	ng ge	ometri	ical a	pplicat	ions	of di	ffere	ential ca	alculus
4	To examine knowledge in multiple integrals.														
5	To improve their ability in Vector calculus.														
COU	IRSE	OUT	COM	IES											
On	On the successful completion of the course, students will be able to														
CO1. Apply the concept of orthogonal reduction to diagonalise the given matrix								1	Apply						
				of curv on curv		circle	of cu	rvatur	e and	centre	ι	Understand			
				xima a ugh bỵ			C	·		on with	n /	Analyze			
	. Find genera			egral o	ver ge	eneral	areas	and tri	ple in	itegral	Ţ	Understand			
	. Appl	•	uss Di	verge	nce the	eorem	for ev	valuati	ng the	e	1	Apply			
	PPIN(COM		ГН Р	ROGI	RAM	ME O	UTCO	OMES	5 ANI) PRO	GRA	AMM	E S	PECIF	TIC
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO 11	PO1 2	P S O	PSO2	PSO3

									1	
CO1	L	S	М			 	 	 	 L	
CO2	L	S	М			 	 -	 	 L	
CO3	L	S	М			 	 	 	 L	
CO4	L	S	М			 	 	 	 L	
CO5	L	S	М			 	 	 	 L	
S- Sti	ong;	M-Me	edium	;L-Lo	OW					

SYLLABUS

MATRICES: Characteristic equation – Eigen values and eigenvectors of a real matrix – Properties of eigenvalues and eigenvectors (Without proof) – Cayley-Hamilton theorem (excluding proof) – Orthogonal transformation of a symmetric matrix to diagonal form.

DIFFERENTIAL CALCULUS: Curvature – Cartesian and Parametric Co-ordinates – Centre and radius of curvature – Circle of curvature – Evolute.

FUNCTIONS OF SEVERAL VARIABLES: Partial Derivatives – Total Differentiation – Maxima and Minima constrained Maxima and Minima by Lagrangian Multiplier Method.

MULTIPLE INTEGRALS: Double integration – change of order of integration – Cartesian and polar coordinates – Area as a double integral – Triple integration.

VECTOR CALCULUS:Directional derivatives – Gradient, Divergence and Curl – Irrotational and solenoidal – vector fields – vector integration – Green's theorem, Gauss divergence theorem and Stoke's theorem (excluding proof).

TEXT BOOKS:

- 1. "Engineering Mathematics I & II", Department of Mathematics, VMKVEC (Salem) & AVIT (Chennai), (2017).
- Dr.A.Singaravelu, "Engineering Mathematics I & II", 23rd Edition, Meenakshi Agency, Chennai (2016).

REFERENCES:

- 1. Veerarajan T., "Engineering Mathematics", Tata McGraw Hill Education Pvt, New Delhi (2011).
- 2. Grewal B.S., "Higher Engineering Mathematics", 42nd Edition, Khanna Publishers, Delhi (2012).
- 3. Kreyszig E., "Advanced Engineering Mathematics", 8th Edition, John Wiley and Sons (Asia) Pvt. Ltd., Singapore (2012).
- 4. Kandasamy P, Thilagavathy K, and Gunavathy K., "Engineering Mathematics", Volumes I & II (10th Edition).

COU	RSE DESIGNERS:			
S.N o	Name of the Faculty	Designation	Department /Name of the	Mail ID

			College	
1	Dr.G.Selvam	Asso.Prof	Maths / VMKVEC	selvam@vmkvec.edu.in
2	Dr. M.Vijayarakavan	Asso.Prof	Maths / VMKVEC	<u>vijayarakavan@vmkvec.edu.</u> <u>in</u>

17MABS04	MATHEMATICS FOR	Category	L	Т	Р	Credit
	MECHANICAL SCIENCES	FC(BS)	2	2	0	3

PREAMBLE

This course provides a solid undergraduate foundation in partial differential equations, probability theory and mathematical statistics and at the same time provides an indication of the relevance and importance of the theory in solving practical problems in the real world. Partial differential equation (PDE) is a differential equation that contains unknown multivariable functions and their partial derivatives. Its generally arise from the mathematical formulation of physical problems. Partial differential equations are derived from physics and instruct the methods for solving boundary value problems, that is, methods of obtaining solutions which satisfy the conditions required by the physical situations such as Heat flow equations of one dimension and two dimensions. Fourier analysis is to represent complicated functions in terms of simple periodic functions, namely cosines and sines. Probability is the science of how likely events are to happen. It's concerned with the roll of a dice, or the fall of the cards in a game. But probability is also vital to science and life more generally. It's used in such diverse areas as weather forecasting and to work out the cost of your insurance premiums. Statistics is permeated by probability. Statistics has been responsible for accelerating progress in all applied sciences by defining the correct methods of planning, collecting, analyzing and interpreting data for establishing cause and effect relationship.

PREREQUISITE

Engineering Mathematics

COURSE OBJECTIVES								
1	To formulate and solve partial differential equations.							
2	2 To represent a periodic function as a Fourier series.							
3	To be familiar with applications of partial differential equations.							
4	4 To be familiar with discrete and continuous random variables and describe the properties of discrete and continuous distribution functions							
5	5 To provide an understanding for the graduate on statistical concepts to include measures of central tendency, curve fitting, correlation and regression.							
COU	RSE OUTCOMES							
On the	e successful completion of the course, students will be able to							
CO1. equati	Explain the methodology of forming and solving partial differential ons.	Understand						
CO2. proble coeffic	Apply							
	CO3 . Solve partial differential equations arising in engineering problems like Apply wave equations and heat flow equation by Fourier series.							
CO4 .	Classify the random variables to determine the appropriate distributions.	Apply						

CO5. Apply least square method to fit a curve for the given data and evaluate the

Apply

correlation coefficient and regression lines for the data.

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

00															
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	М	М	L					L				L	L		
CO2	S	М	М	L				L				L	L		
CO3	S	М	М	L				М				М	L		
CO4	S	М	L					М				М	L		
CO5	S	S	М	L				М				М	L		

S- Strong; M-Medium; L-Low

SYLLABUS

PARTIAL DIFFERENTIAL EQUATIONS: Formation - Solutions of standard types f(p,q)=0, clairauts form, f(z,p,q)=0, f(p,x)=g(q,y) of first order equations - Lagrange's Linear equation - Linear partial differential equations of second and higher order with constant coefficients.

FOURIER SERIES: Dirichlet's conditions – General Fourier series – Half -range Sine and Cosine series – Parseval's identity – Harmonic Analysis.

BOUNDARY VALUE PROBLEMS: Classification of second order linear partial differential equations – Solutions of one – dimensional wave equation, one – dimensional heat equation – Steady state solution of two – dimensional heat equation – Fourier series solutions in Cartesian coordinates.

STANDARD DISTRIBUTIONS: Moment generating function of random variables – Binomial – Poisson – Geometric – Uniform – Exponential – Gamma and Normal Distributions and their Properties (Mean Variance and Problems).

STATISTICS: Measures of central tendency, Curve fitting – Straight line and Parabola by least square method, Correlation, Rank correlation and Regression.

TEXT BOOKS:

- 1. Dr.A.Singaravelu, "Transforms and Partial differential Equations", 18th Edition, Meenakshi Agency, Chennai (2013).
- 2. A.Singaravelu, "Probability and Statistics", Meenakshi Agencies, Chennai (2016)
- 3. S.C.Gupta, V.K.Kapoor, "Fundamentals of mathematical statistics", Sultan Chand & Sons (2006).

REFERENCES:

- 1. T. Veerarajan, "Engineering Mathematics" (for semester III), Third Edition, Tata McGraw-Hill Publishing Company limited (2011).
- 2. Grewal, B.S., "Higher Engineering Mathematics", 42nd Edition, Khanna Publishers, Delhi (2012).
- 3. Kreyszig, E., "Advanced Engineering Mathematics", 8th Edition, John Wiley and Sons (Asia) Pvt Ltd., Singapore (2012).
- 4. T. Veerarajan, "Probability, Statistics and Random processes" 2nd Edition, Tata McGraw-Hill Publishing Company Ltd., New Delhi (2006).

5. Johnson. R.A., "Miller & Freund's Probability and Statistics for Engineers", Sixth Edition, Pearson education, Delhi, 2000. (Chapters 7, 8, 9, 12).

COURSE DESIGNERS

S.No	Name of the Faculty	Designation	Department / Name of the College	Mail ID
1	Dr. S.Punitha	Asso.Prof	Maths / VMKVEC	punitha@vmkvec.edu.in
2	Ms.M.Usha	Asst.Prof	Maths / VMKVEC	usha@vmkvec.edu.in

Category	L	Т	Р	Credit
FC(BS)	3	2	0	3

Preamble

This course aims at developing the ability to formulate an engineering problem in a mathematical form appropriate for subsequent computational treatment and to choose an appropriate numerical approach. An Under Graduate Mechanical Engineering student needs to know sufficient numerical tools and techniques for solving engineering problems such as static orsteady state problems, vibration or stability problems and initial value or transient problems etc.

Prerequisite

1.Mathematics for Mechanical sciences

Course Objectives

- 1. To familiar with numerical solution of equations
- 2. To be get exposed to finite differences and interpolation
- 3. To be thorough with the numerical Differentiation and integration
- 4. To find numerical solutions of ordinary differential equations
- 5. To find numerical solutions of partial differential equations

Course Outcomes

On the successful completion of the course, students will be able to

CO1.Solve the system of linear algebraic equations and single non linear equations arising in the field of Mechanical	Apply
Engineering. CO2 Apply methods to find intermediate numerical value & polynomial	Apply
of numerical data.	Apply
CO3 Apply methods to find integration, derivatives of one and two variable functions.	Apply
CO4 Solve the initial value problems using single step and multistep methods.	Apply
CO5 Solve the boundary value problems using finite difference methods.	Apply

Mapping with Programme Outcomes and Programme Specific Outcomes

			0					0		-					
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
1	S	М	L	L	-	-	-	-	-	-	-	-	М	-	-
2	S	М	М	L	-	-	-	-	-	-	-	-	М	-	-
3	S	М	М	L	-	-	-	-	-	-	-	-	М	-	-
4	S	S	S	М	L	-	-	-	-	-	-	-	М	-	-
5	S	S	S	М	L	-	-	-	-	-	-	-	М	-	-

S- Strong; M-Medium; L-Low

Syllabus

SOLUTION OF EQUATIONS AND EIGEN VALUE PROBLEMS:

Method of false position, Newton-Raphson method for single variable, Solutions of a linear system by Gaussian, Gauss-Jordan, Jacobian and Gauss- Seidel methods. Inverse of a matrix by Gauss-Jordan method. Eigen value of a matrix by Power Method.

INTERPOLATION AND APPROXIMATION:

Interpolation with Newton's divided differences, Lagrange's polynomial, Newton forward and backward differences, central difference Formula (Stirling's and Bessel's).

NUMERICAL DIFFERENTIATION AND INTEGRATION:

Numerical differentiation with interpolation polynomials, Numerical integration by Trapezoidal and Simpson's (both 1/3rd and 3/8th) rules. Romberg's rule, Two and Three point Gaussian quadrature formula. Double integrals using Trapezoidal and Simpson's rule..

INITIAL VALUE PROBLEMS OF ODE:

Single Step Methods - Taylor Series, Euler and Modified Euler, Runge-Kutta method of fourth order -first and second order differential equations. Multistep Methods - Milne and Adam's-Bash forth predictor and corrector methods.

BOUNDARY VALUE PROBLEMS FOR ORDINARY AND PARTIAL DIFFERENTIAL EQUATIONS:

Finite difference solution for the second order ordinary differential equations, Finite difference solution for one dimensional heat equation (both implicit and explicit). One dimensional wave equation and two dimensional Laplace and Poisson equations.

Text Books

1. S.K Gupta, "Numerical Methods for Engineers", New Age International Pvt. Ltd. Publishers, 2015.

2.S. R. K. Iyengar, R. K. Jain, Mahinder Kumar Jain, "Numerical methods for Scientific and Engineering

Computations", New Age International publishers, 6th Edition, 2012.

3. T. Veerarajan, T.Ramachandran, "Numerical Methods with Programs in C and C++", Tata McGraw-Hill (2004).

Reference Books

- 1. Joe D. Hoffman , Steven Frankel, "Numerical Methods for Engineers and Scientists", 3 rd Edition, 2015, Tata Mc-Graw Hill. (New York)
- 2. Steven C. Chapra, Raymond P. Canale, "Numerical Methods for Engineers", MC Graw Hill Higher Education, 2010

C	ourse	e Designers:			
	S.No	Name of the	Designation	Department/College	Mail ID
		Faculty	_		
	1	Dr.	Associate	Maths / VMKVEC	vijayarakavan@vmkvec.edu.i
		M.Vijayarakavan	Professor		<u>n</u>
	2	Dr. G. Selvam	Associate	Maths / VMKVEC	selvam@vmkvec.edu.in
		DI. G. Servalli	Professor		

17MABS20	PROBABILITY AND STATISTICS	Category	L	Т	Р	Credit
		BS	2	2	0	3

PREAMBLE

Probability is the science of how likely events are to happen. It is concerned with the roll of a dice, or the fall of the cards in a game. But probability is also vital to science and life more generally. It is used in such diverse areas as weather forecasting and to work out the cost of your insurance premiums. Statistics is permeating by probability. An understanding of basic probability is critical for the understanding of the basic mathematical underpinning of statistics. Strictly speaking, the word 'statistics' means one or more measures describing the characteristics of a population. We use the term here in a more idiomatic sense to mean everything to do with sampling and the establishment of population measures.

PRER	EQUIS	ITE - N	Nil												
COUR	SE OB	JECTI	VES												
1	To ge	t the kn	owledg	e on co	ncepts	of rando	om vari	ables a	nd distr	ibutions					
2	To acquire skills in handling situations involving more than one random variable and functions of random variables														
3	To acquire knowledge of statistical techniques useful in making rational decision in management problems														
4	To be exposed to statistical methods designed to contribute to the process of making scientific judgments in the face of uncertainty and variation														
5	To familiar with the concepts of statistical quality control														
COUR	COURSE OUTCOMES														
On the	success	sful con	pletion	of the	course,	student	s will t	e able	to						
CO1. (Classify	the ran	dom va	riables	to detei	mine th	ne appro	opriate	distribu	tions.				Apply	/
	O2. Calculate probabilities, and derive the marginal and conditional distributions of bivariate random ariables.														
	O3 . Perform Test of hypothesis as well as calculate confidence interval for a population parameter for gle sample and two sample cases.														
CO4.U designe				-			s of d	esign o	of expe	riments.	Conceiv	ve and c	conduct a	Apply	Į
CO5. [Demons	trate the	e ability	to desi	ign and	interpr	et contr	ol char	ts to vai	riables ar	nd attribu	ites		Apply	/
MAPP	ING W	ITH P	ROGR	AMMI	E OUT	COME	S AND	PROC	GRAM	ME SPE	CIFIC (OUTCO	MES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	М	L				М				М			
CO2	S	М	М	L				М				М			
CO3	S	S	М	L				М				М			
CO4	S	S	М	L				М				М			
CO5	S	S	S	М	L			М				М			
S- Stro	ng; M-	Mediu	m; L-L	ow								•			

SYLLABUS

RANDOM VARIABLES: Discrete and continuous random variables – Moments – Moment generating functions – Binomial, Poisson, Geometric, Uniform, Exponential, Normal distributions.

TWO DIMENSIONAL RANDOM VARIABLES: Joint distributions – Marginal and conditional distributions – Covariance – Correlation and Linear regression – Transformation of random variables – Central limit theorem (for independent and identically distributed random variables).

TESTING OF HYPOTHESIS: Sampling distributions - Estimation of parameters - Statistical hypothesis - Large sample test based on Normal distribution for single mean and difference of means -Tests based on t, Chi-square and F distributions for mean, variance and proportion - Contingency table (test for independent) - Goodness of fit.

DESIGN OF EXPERIMENTS: One way and Two way classifications - Completely randomized design – Randomized block design – Latin square design.

STATISTICAL QUALITY CONTROL: Control charts for measurements (X and R charts) – Control charts for attributes (p, c and np charts) – Tolerance limits - Acceptance sampling.

TEXT BOOKS:

- 1. Douglas C. Montgomery and George C.Runger, "Applied Statistics and Probability for Engineers", 6th Edition, Wiley, 2013
- 2. S.P. Gupta, "Statistical Methods", Sultan Chand & Sons, New Delhi, 45th Revised Edition, 2017.

REFERENCES:

- 1. S.C.Gupta and V.K.Kapoor, "Fundamentals of Mathematical Statistics", Sultan Chand & Sons, New Delhi, 2015.
- 2. Miller, "Probability and Statistics for Engineers", Freund-Hall, Prentice India Ltd. 2009.

S.No	Name of the Faculty	Designation	Department	Mail ID
1	Ms.M.Usha	Assistant Professor	Mathematics	usha@vmkvec.edu.in
2	Dr. P.Sasikala	Professor	Mathematics	sasikalap@vmkvec.edu.in

17MABS21

RESOURCE MANAGEMENT TECHNIQUES

Category	L	Т	Р	Credit
FC(BS)	2	2	0	3

Preamble

Operations Research is the study of optimization techniques. It is applied in decision theory. Rapid development and invention of new techniques occurred since the World War II essentially, because of the necessary to win the war with the limited resources available. It is applied for solving Inventory control problems, Maintenance and Replacement problems, Sequencing and Scheduling problems, Assignment of Jobs to applicants, Transportation problems, Network problems and Decision models. Entire subject is useful for all resource managers of various fields.

Prerequisite

NIL

Course Objectives

- 1. Develop linear programming problems and find solutions of LPP and apply in management decisions
 - 2. To acquire knowledge of linear programming, assignment and transportation problems
- 3. Techniques of PERT, CPM and sequencing
- 4. Detailed knowledge of Inventory control
- 5. Decision theory and Game theory techniques

Course Outcomes

On the successful completion of the course, students will be able to

CO1.Formulate the LPP. Conceptualize the feasible region. Solve the LPP with two variables using graphical method and By simplex method.	Understand& Apply
CO2. Become familiar with the types of problems that can be solved by applying a transportation model. Be able to identify the special features of the assignment problem.	Apply
CO3. Solve network problems using CPM and PERT techniques and apply sequencing model	Apply
CO4. Determine the order quantity.Determine the reorder point and safety stock forinventory systems.Design a continuous or periodic review inventorycontrolsystem	Apply
CO5. Apply replacement models .To makedecisionsinacompetitive Environmentisaverycommonandimportantone.	Apply

Mapping with Programme Outcomes and Programme Specific Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
1.	S	М	L		S			S				
2.	S	М	L		S			S				
3.	S	М	L		S			S				
4.	S	S	L		М			S				
5.	S	S	L		М			S				

S- Strong; M-Medium; L-Low

Syllabus

LINEAR PROGRAMMING

Linear programming problem – Graphical method - Simplex method – Big M method – Duality principle.

TRANSPORTATION MODEL

Transportations problem – Assignment problem – Under Assignment -Travelling salesman problem

NETWORK MODEL

Project Network - CPM and PERT Networks - Critical path scheduling - Sequencing Models.

INVENTORY MODELS

Inventory Model – Economic Order Quantity Model – Purchasing Model (with and without shortages) – Manufacturing Model (with and without shortages) - Stochastic Inventory Model (Stock in discrete and continuous units).

DECISION MODEL

Decision Model – Game theory – Two Person Zero sum game – Algebraic solutions Graphical solutions – Replacement model – Model based on Service life – Economic life single / multivariable search technique.

Text Books

- 1. H.A.Taha, "Operations Research", Prentice Hall of India , 1999, Six Edition.
- 2. KantiSwarup, P.K.Gupta, Man Mohan, SultanChand& Sons, New Delhi (2010)

Reference Books

- 1. Sundarasen.V, Ganapathysubramaniyam . K.S. Ganesan.K. "Operations Research", A.R. Publications
- 2. Premkumar Gupta, Hira, "Operations Research" Chand & company New Delhi.

Assessment Pattern/Assessment Methods

Plaam's Catagomy	Continuous	Assessment T	Terminal Examination	
Bloom's Category	1	2	3	Terminal Examination
Remember	20	10	10	0
Understand	20	30	30	30
Apply	60	60	60	70
Analyse	0	0	0	0
Evaluate	0	0	0	0
Create	0	0	0	0

Course Designers:

S.No	Name of the Faculty	Mail ID
1	V.T.Lakshmi	lak_msc@yahoo.co.in
2	S.Punitha	puni.jeeju80@gmail.com

17PCBS02	PHYSICAL SCIENCES PART A - ENGINEERING PHYSICS	Category	L	Т	Р	Credit	
		FC(BS)	4	0	0	4	

PREAMBLE

Engineering Physics is the application of the concepts of physics to various technological applications. Understanding the concepts of laser, types of lasers, the propagation of light through fibers, applications of optical fibers in communication and different types of non-destructive techniques will help an engineer to analyze and design various equipments.

PREREQUISITE - NIL

COUR	RSE O	BJEC	TIVES	5											
1	To re	call th	e prope	erties c	of laser	and to	o expla	in prin	ciples	of laser					
2	То ех	amine	the ap	plicati	ons of	laser									
3	Το οι	utline t	he prir	ciples	of fibr	e optic	cs								
4	Тоех	amine	the ap	plicati	ons of	fibre o	optics								
5	To ex	xplain [•]	various	s techn	iques ı	used in	Non-o	lestruc	tive te	esting					
COUR	RSE O	UTCO	OMES												
On t	URSE OUTCOMES On the successful completion of the course, students will be able to O1. Define the principles of laser Understand														
CO1	. Define the principles of laser Understand														
CO2	2. Use laser in designing equipments Apply														
CO3		Use laser in designing equipmentsApplyExplain the principles of fiber optics & the propagation of light in optical fibersUnderstand													
CO4	. Utiliz	ze fibro	e optic	s in co	mmuni	ication	syster	ns and	senso	rs		Apply			
CO5	. Inspe	ect mat	erials	using	non-de	estructi	ve test	ing tec	hniqu	es		Analy	ze		
MAPI OUTC			[PRO	GRAN	IME (OUTC	OMES	5 AND	PRO	GRAM	ME S	PECI	FIC		
COS	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10	PO1 1	Р О 12	PSO 1	PS O2	P S O 3
CO1	L	М	L	L									L		
CO2	S	S	М	М	S	М			L			М	L		
CO3	L	М	L	L									L		

S S- Strong; M-Medium; L-Low

S

Μ

М

Μ

Μ

S

S

М

Μ

SYLLABUS

S

S

CO4

CO5

LASERS: Laser characteristics - Stimulated Emission - Population Inversion - Einstein coefficients -Lasing action - Types of Laser - Nd:YAG laser, CO2 laser, GaAs laser - Applications of Laser -

L

Μ

Μ

Μ

L

L

Holography – construction and reconstruction of a hologram

FIBRE OPTICS: Principle and propagation of light in optical fibres – numerical aperture and acceptance angle – types of optical fibres (material, refractive index, mode) – Applications: Fibre optic communication system – fibre optic displacement sensor and pressure sensor.

NON-DESTRUCTIVE TESTING: Introduction – Types of NDT - Liquid penetrant method – characteristics of penetrant and developer - ultrasonic flaw detector – X-ray Radiography: displacement method – X-ray Fluoroscopy.

TEXT BOOK

Engineering Physics, compiled by Department of Physics, Vinayaka Missions University, Salem.

REFERENCE BOOKS

1. Beiser, Arthur, Concepts of Modern Physics, 5th Ed., McGraw-Hill, 2009.

2. Halliday. D, Resnick. R, Walker. J, Fundamentals of Physics, Wiley & sons, 2013.

3.Gaur R. K. and Gupta S. L., Engineering Physics, DhanpatRai publishers, New Delhi, 2001.

4. Avanadhanulu. M. N., Arun Murthy. T. V. S, Engineering Physics Vol. I, S. Chand, 2014.

5. Rajendran. V, Engineering Physics, Tata McGraw Hill Publication and Co., New Delhi, 2009.

6. Baldev Raj et al. Practical Non-Destructive Testing, Narosa Publications, 2017.

COURSE DESIGNERS

S.No	Name of the Faculty	Designation	Department / Name of the College	Mail ID
1	Dr.C.Senthil Kumar	Professor	Physics / VMKVEC	senthilkumar@vmkvec. edu.in
2	Dr.R.Sethupathi	Professor	Physics / VMKVEC	sethupathi@vmkvec.ed u.in

17PC	RS03				'SICA					Cate	egory	L	Т	Р	Credit
1/FC	D302	(P	ART	B - EN	GINE	ERIN	G CHI	EMIS	FRY)	В	S	2	0	0	2
underst idea ab and cor	and the out ele rrosion	e appli ctroch . Conv	cation emistr ventior	s of E y. Wat nal and	ngineer er tech Non-o	ring Cl nology conven	hemist v study tional	ry. The gives energy	e elect the in y field	ering Ch trodes, C itiative a is essen ife style.	ell and bl bout sof	oa`tteri tening	es stud of wat	ly give er, des	es a clear alinatior
PRER	EQUIS	SITE -	NIL												
COUR		-													
1	To in	npart f	undan	nental	knowle	edge in	Chen	nistry s	so that	t the stud	dent will	under	stand t	he eng	gineering
	conce	ept and	can fa	ace the	forthc	oming	years	as well	as the	e industry	y effectiv	vely.			
2	To ha	ive a c	lear kr	nowled	ge of e	lectroc	hemis	try, cel	lls and	electrod	es.				
3	To fa	miliari	zes the	e type	of batte	eries ai	nd fuel	cell.							
4	To la	y foun	dation	for pra	actical	applica	ations	of wate	er soft	ening and	d desalin	ation i	n engir	eering	g aspects
5	To in	culcate	e the k	nowled	lge of t	fuel, th	is is es	sentia	l for c	urrent sco	enario.		_		_
COUR					<u> </u>										
On the				ion of t	the cou	rse, stu	idents	will be	e able	to					
	Inderst	and the	e vital	knowl	edge in	n Engir	neering	Chem	istry ł	nelps the	learners	in futu	ıre	Unde	erstand
studies CO2. E	mploy	the ba	sic kn	owledg	e of ce	ells and	l electr	odes						Appl	V
)emons													Appl	-
								-						Appl	V
CO4. A	appiy d	esaima	ation p	locess	withe	ngmee	ing as	specis							erstand
CO5. D	Discuss	about	conve	ntional	and no	on-con	ventio	nal fue	l for t	he curren	it scenari	io.		Onuc	1 stand
CO6 G	enerali	ze poly	vmers	and sm	nart ma	terials								Appl	у
							OMES	AND	PRO	GRAMM	IE SPEC	CIFIC	OUTC	COME	S
COS	PO	PO	PO	PO	PO	РО	PO	PO	PO	PO10	PO11	PO	PSO	PS	PSO3
	1	2	3	4	5	6	7	8	9	1010	-	12	1	O2	1303
CO1 CO2	M M	M M	M M	-	-	M M	M M	-	-	-	-	M S	L L		
CO2	M	S	M	-	-	S	M	-	-	-	-	S	L		
CO4	M	M	M	-	-	M	M	-	-	_	-	S	L		
CO5	M	М	L	-	-	М	S	-	-	_	-	S	L		
70(Μ	М	М	-	-	М	М	-	-	-	-	S	L		
CO6		Mediu													

UNIT – I: ELECTROCHEMISTRY, BATTERIES AND FUEL CELLS Electrode potential - Nernst equation – Electrodes (SHE, Calomel and Glass) - cells - EMF measurement. Primary battery (Daniel and dry cell) – secondary battery (lead Acid storage battery and Nickel-Cadmium battery) – Fuel cell $(H_2-O_2 \text{ fuel cell})$

UNIT – II: WATER TECHNOLOGY AND CORROSION

Sources of water – impurities – Hardness and its determination (problems to be avoided) – boiler troubles – water softening (Zeolite &Demineralisation) – Domestic water treatment – Desalination (Electrodialysis&ReverseOsmosis).

UNIT – III FUELS AND CHEMISTRY OF ADVANCED MATERIALS

Classification of Fuels (Solid, Liquid, Gaseous, Nuclear and Bio fuels) – Calorific Value of a fuel –Non Petroleum Fuels –Non conventional sources of Energy – combustion.

Basics and Applications:-Organic electronic material, shape memory alloys, polymers (PVC, Teflon, Bakelite)

TEXTBOOK

1.Engineering Chemistry by VMU.

REFERENCES

- 1. A text book of Engineering Chemistry by S.S. Dara, S.Chand& company Ltd., New Delhi
- 2. Engineering Chemistry by Jain & Jain, 15th edition Dhanpatrai Publishing Company (P) Ltd., New Delhi
- 3. A text book of Engineering Chemistry by ShashiChawla, Edition 2012 Dhanpatrai& Co., New Delhi.
- 4. Engineering Chemistry by Dr. A. Ravikrishnan, Sri Krishna Publications, Chennai.

COURSE DESIGNERS

S.No	Name of the Faculty	Designation	Department / Name of the College	Mail ID
1	Dr.T.Shanthi	Professor	Chemistry / VMKVEC	shantht@vmkvec.edu.in

17PC	CBS81	DAI				ENCES	LAB: JAL LA	R IN	Catego	ory	L	Т	Р	Credit
		IAI			PHYSI				FC(B	S)	0	0	4	2
PREA	MBLE													
				•							0	-		ion. The
														e students
			-	nce in	pertori	ning th	ie expe	riment	ts throug	n vir	tual la	borat	tory.	
PRER	EQUIS	STTE -	· NIL											
COU	RSE OB	SJEC	ΓIVES	5										
1	-				U				on of ph	ysics	sexpe	rimer	nts	
2	To inc	ulcate	the ha	abit of	handli	ng equi	ipments	s appro	opriately					
3	To gai	n the	knowl	edge of	f pract	icing e	xperim	ents th	rough vi	rtual	labor	atory	•	
4	To kn	ow the	e impo	rtance	of unit	.s								
5				vith acc	curacy									
COU	RSE OU	JTCO	MES											
On t	he succe	essful	compl	etion o	of the c	ourse,	student	s will	be able t	0				
CO1	. Operat	te the	equipr	nents v	with pr	ecision	l					App	oly	
CO2	. Practic	ce to h	andle	the equ	lipmer	nts in a	system	atic m	anner			Ap	oly	
	. Demo			1	1		•					Ap	oly	
						U			•	arin	onto		dersta	nd
									ning exp ng results		ients,	CIN	uersta	110
	. Calcul			-	-				<u> </u>			Ana	alyze	
MAPI		VITH				•	OMES	AND	PROGR	AM	ME S	SPEC	IFIC	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	P PO10	Р	PO1	PS	PSO2	PSO3
									0 9	0 11	2	01		
CO1	S	S	М	М	S				М		М	L		
CO2	S											L		
CO3	S	S	М	М	S						S	L		
CO4 CO5	S S	S S										L L		
	ong; M-I		ım. L-j	[ow						l		Ľ		
	ABUS		, 🖬											
SILL 1.		's mo	dulus c	of a bar	- Non	-unifor	m bend	ling						
2.	Rigidit							-						
	Viscos													
								sonic	Interfero	mete	er			
	Particle				-	-		tromat						
6. 7.	Wavel Thickr							uomet	.01					
7. 8.	Therm							e's dis	с					
9.	Band g			•										

10. Specific resistance of a wire – Potentiometer

LAB MANUAL

Physical Sciences Lab: Part A – Real And Virtual Lab In Physics Manual, prepared by the faculty of Department of Physics, Vinayaka Mission's Kirupananda Variyar Engineering College, Salem (2017).

COURSE DESIGNERS

S.No.	Name of the Faculty	Designation	Department / Name of the College	Email id
1	Dr.C.Senthil Kumar	Professor	Physics / VMKVEC	senthilkumar@vmkvec.edu.in
2	Dr.R.Sethupathi	Assistant Professor	Physics / VMKVEC	sethupathi@vmkvec.edu.in

				PHYS	SICA	L SCI	IENC	ES		C	ategory	L	Т	Р	Credit
17P(CBS81	PA	RT B	- ENC		ERIN AB	IG CH	IEMI	(STR)	Y	BS	0	0	2	1
Cher elect elect Now	nistry. rodes, rochen	It als Cell nistry s the	o help and . Wate practic	s the st batteric er tech cal and	tudent es stu nolog	ts to u idy g y stu	inders ives dy giv	tand t clear ves th	he ap basic le ide	plicatio applio a abou	ons of E cation	Ènginee oriente ess an	ering C d kno d its d	Chemis wledg lisadv	sineering stry. The ge about antages style.
COL	J RSE	OBJI	ECTIV	VES											
1					in C	hemis	stry so	that	the	studen	will u	inderst	and th	e eng	gineering
	conce	pt.													
2		-	te the l	cnowle	doe o	f wat	er and	elect	roche	mistry					
					U					•					
3					actica	al app	licatio	ons of	chem	1stry 11	engine	ering a	aspects	5.	
	JRSE														
	he succ										e to		TL	1 4	1
	Unde							ture s	tudies				-	lerstar	nd
	Analy . Apply							ering	aspec	ets			App App		
			-			-			-		~ ~ ~ ~ ~				
	PPING FCOM		TH PF	ROGR	AMN	IE O	UTCO	OMES	S ANI) PRO	GRAN	IME S	PECI	FIC	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	М	-	L	М	М	S	-	-	-	М	L	-	-
CO2	S	М	М	-	L	М	М	L	-	-	-	М	L	-	-
CO3	S	S	М	-	L	М	М	М	-	-	-	М	L		
S-St	rong; l	M-Me	edium;	L-Lov	V										
1 2 3 4 5 6 7	E Estin Acio Estin Dete E Estin	mation l Base nation ermina nation	n of Hy e titration n of Fe ation of n of So	f Hardn vdrochle on by p rrous ic f Dissol dium b	oric ac H met on by H ved or y Flan	id by hod Potent xygen ne pho	condu iometr by Wi	ctome ic met nkler' er	hod s metł						
7 8	. Esti			opper from by Sp				nution							
	Book: igineer	ing (hemis	try Lał	o Man	ual b	v VM	U.							
	-	-		•	/ 171ull	au U	, , 1,11								
S.Nc	JRSE I		f the F		D	esign	ation	De	-	ent / Na Colleg			En	nail id	
		.Shar	41. 1		Dro	fessor		Ch		y / VM		ala a 41	nt@vm	1	1

17PHBS05	SMART MATERIALS	Category	L	Т	Р	Credit
		FC (BC)	3	0	0	3

PREAMBLE

Smart Materials gives an outlook about various types of materials having potential application in Engineering and Technology. In particular, Students learn about Smart Materials and their applications, Properties of Crystalline Materials &Nanomaterials, Characteristics of Magnetic materials. They also get a clear picture about superconducting materials.

PRERQUISITE - NIL

COURSE OBJECTIVES

COURSE OBJECTIVES															
1	To explain the properties of smart materials														
2	To demonstrate the structure of crystalline materials														
3	To examine the synthesis of Nano materials														
4	To explain the properties and classification of magnetic materials														
5 To outline the concept of superconducting materials and their properties															
COURSE OUTCOMES															
On the successful completion of the course, students will be able to															
CO1.	. Utilize the smart materials for designing equipments Apply														
	2. Interpret the structure of crystalline materials Apply														
CO3. 1	Develop equipments using nano materials Analyze														
CO4.	CO4. Use the properties of magnetic materials in designing equipments Apply														
CO5. 1	5. Develop the efficiency of superconducting materials Analyze														
MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC															
OUTO	COMI	ES		-					-		-	-	-		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	S	М	S				М			М	L		
CO2	S	М	S	М	S				М			М	L		
CO3	S	S	S	S	S				S			М	L		
CO4	S	М	S	М	S				М			М	L		
CO5	S	S	S	S	S				S			М	L		

S- Strong; M-Medium; L-Low

SYLLABUS

SMART MATERIALS: Shape Memory Alloys (SMA) – Characteristics and properties of SMA, Application, advantages and disadvantages of SMA. Metallic glasses – Preparation, properties and applications.

CRYSTALLINE MATERIALS: Unit cell – Bravais lattice – Miller indices – Calculation of number of atoms per unit cell – atomic radius – coordination number – packing factor for SC, BCC, FCC, HCP structures.

NANO MATERIALS: Nanophase materials - Top-down approach - Mechanical Grinding -

Lithography - Bottom-up approach – Sol-gel method – Carbon nanotubes – Fabrication – applications.

MAGNETIC MATERIALS: Basic concepts – Classification of magnetic materials – Domain theory – Hysteresis – Soft and Hard magnetic materials.

SUPERCONDUCTING MATERIALS: Superconducting phenomena – properties of superconductors – Meissner effect – isotope effect – Type I and Type II superconductors – High Tc Superconductors – Applications of superconductors.

TEXT BOOK:

Mani P, Engineering Physics II, Dhanam Publications, 2011.

REFERENCES:

1. Pillai S.O., Solid State Physics, New Age International (P) Ltd., publishers, 2009.

2. Senthilkumar G. Engineering Physics II. VRB Publishers, 2011.

COURSE DESIGNERS										
S.No	Name of the Faculty	Designation	Department / Name of the College	Mail ID						
1	Dr.C.Senthil Kumar	Professor	Physics / VMKVEC	senthilkumar@vmkvec.edu.in						
2	Dr.R.Sethupathi	Professor	Physics / VMKVEC	sethupathi@vmkvec.edu.in						

17PH	IBS06	;	E	NER	GY PI	HYSIC	CS		Categ	ory	L	Т	Р		С
									FC(B	S)	3	0	0		3
Pream The ob		e is to	make	the lea	rners	unders	stand a	lbout E	Energy	Physics	5				
Prereg NIL	uisite														
Course	e Obje	ective													
1 U	Jnders	stand c	concep	t of ph	ysics	behind	the v	arious	energ	y modes					
2 I	Learn 1	the ess	sential	inforn	nation	about	energ	y reso	urces a	and their	utiliz	ation			
3 I	Learn	the ph	ysics	involv	ed ene	ergy sc	ources								
Course	e Outo	comes	: On t	he suc	cessfu	ıl com	pletio	n of tl	ne cou	rse, stu	dents	will bo	e able	to	
CO1.	Un	Idersta	and the	conce	ept of I	light a	nd opt	ical pr	operti	es of sol	ids		Ur	ndersta	nd
CO2.	Un	dersta	and the	vario	us app	licatio	ons of o	energi	es				Ur	ndersta	nd
CO3.	Im	prove	their k	nowle	edge ir	n nucle	ear phy	ysics					Ac	quire	
CO4.	Fai	miliari	ize the	ir kno	wledg	e of sc	ound b	ased e	nergy	in piezo	electri	с	Ap	oply	
CO5.	An	alyze	Techn	ology	based	wind	energ	y resou	irces				Ar	nalyze	
CO6.	Sir	nulati	on of	energy	/ wave	gener	ration						Ap	oply	
Mappi	ng wi	th Pro	ogram	me Oı	utcom	es and	l Prog	gramn	ne Spe	cific Ou	itcom	es			
СО	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10	PO 11	PO 12	PS O1	PS O2	PSO 3
CO1	S	М	L	М	S	М	S	М	L	М	S	М	-	-	-
CO2	S	-	М	S	М	L	М	S	М	S	L	М	-	-	-
CO3	М	L	-	L	S	М	S	L	М	S	-	L	-	-	-
CO4	S	М	-	-	L	М	S	М	S	L	S	М	-	-	-
CO5	М	М	М	-	S	-	S	L	S	М	L	L	-	-	-
CO6	S	L	S	L	-	L	М	-	М	L	-	М			
S- Stro	ong; N	I-Med	lium;	L-Lov	V										

Syllabus

Solid state light energy

Light Sources, Luminaries, Ballasts; Lamp Types and their Features. Florescence, Phosphorescence, Electroluminescence, development of electroluminescent materials and thin film devices, solid state display devices-Applications

Wave energy systems

Wave Characteristics and Statistics- Plane and Spherical Waves-. Longitudinal and Transverse Waves-Plane Progressive Waves-Pressure of a Longitudinal Wave-Energy Transport-Intensity of Wave- Ripple and Gravity Waves- Wave Energy Devices. -Applications

Atomic Energy

Introduction-Nuclear Fission and Nuclear Fusion- Power from fission, Conversion and breeding, Neutron transport equation, Diffusion theory approximation, Nuclear Energy and the Environment. Nuclear reactors-Applications.

Geothermal Energy

Introduction -Nature of Geothermal energy resources- Definition and Classification-Geothermal energy concepts-Utilization of Geothermal Resources - Geothermal Technologies-Applications.

Piezoelectric Energy

Introduction- Ultrasound - Characteristics of piezoelectric effect- materials and mathematical description of piezoelectricity - piezoelectric parameters and modeling- piezoelectric generators.- piezoelectric energy harvesting applications.

Text Books

Nuclear Energy by Raymond Murray Keith Holbert, 7th Edition.

1

Reference Books

1.	"OPTICAL PROPERTIES OF SOLIDS "by Frederick. Wooten, Department of Applied Sciences University of California Davis, California.
2.	Introduction to Wind Energy Systems: Basics, Technology and Operation (Green Energy and Technology), by Hermann-Josef Wagner, ISBN: 9783642020223, Publisher: Springer, September 2009.
3.	Classification of geothermal systems – a possible scheme –Subir K. Sanyal – GeothermEx, Inc.
4.	Geothermal reservoir engineering – Geothermal Communities (GEOCOM) project EU Waves: Berkeley Physics Course, vol. 3, Francis Crawford, 2007, Tata McGraw- Hill.

- 5. Handbook of Ocean Wave Energy- Arthur PecherJens Peter Kofoed Editors.
- 6. Piezoelectric Energy Harvestingby Mohammad Adnan Ilyas

Course Designers

S.No	Faculty Name	Designation	Department/Coll ege	Email id
1	Dr.Latha	Assoc.Prof	H&S/AVIT	
2				
3				

17P	HBS07			SP	ACE S	CIENC	E			Category	y	L	Т	Р	Credit
1/1	110.507									FC(BS)		3	0	0	3
PREA	MBLE														·
involv the sp	ves the st	tudy ab Il provi	out sola ide opp	r syster portunit	m, plan	ets, sta	rs, galaz	kies, met	eors, a	asteroids	, orgi	n of u	niverse	e. Ûnc	ce Science lerstanding for further
PREF	REQUIS	ITE -													
COU	RSE OB	JECTI	VES												
1	To ree	call the	structu	e of un	iverse.										
2	To ex	plain at	out coi	nets, m	eteors a	and aste	eroids								
3	To ex	amine t	he struc	cture of	sun.										
4	То со	rrelate (the orig	in and t	ypes of	stars.									
5	To ou	tline th	e origin	of univ	verse.										
COU	RSE OU	TCOM	IES												
On	the succe	essful co	ompleti	on of th	e cours	e, stude	ents will	be able	to						
CO1	. Define	e the bas	sic prin	ciples a	nd prop	erties o	of unive	rse					Rem	ember	
CO2	2. Descri	be the c	lynamio	cs of co	mets, n	neteors							Und	erstand	
CO3	6. Illustra	ate the s	structur	e of sun	l.								App	ly	
CO4	. Illustra	ate the t	ypes of	starts									Ana	yze	
CO5	6. Analyz	ze the o	rigin of	univer	se								Ana	yze	
MAP	PING W	/ITH P	ROGR	AMMI	E OUT	COME	S AND	PROGE	RAMN	ME SPE	CIFI	C OU	ГСОМ	1ES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO 9	PO10	PO 11	PO 12	PS O1	PSO 2	PSO3
CO1	М	L	М	L	L				L			М			
CO2	M	L	L	L	L				L			M			
CO3	M	M	M	L	M				M			M			
CO4	M	S	M	L	M				L			M			
CO5	M ong; M-l	S		L	М				L			М			
	Ŭ	viculull	i, L-L0	w											
SYLL	ABUS														

UNIVERSE PLANETS: Interior planets - exterior planets - crust, mantle and core of the earth - different - region of earth's atmosphere - rotation of the earth - magnetosphere - Van Allen belts - Aurora.

COMETS, METEORS, ASTEROIDS: Composition and structure of comets - periodic comets - salient features of

asteroids, meteors and its use

STRUCTURE OF SUN: Sun Structure of photosphere, chromosphere, corona - sunspots – solar flares - solar prominences - solar piages - satellites of planets -structure, phases and their features of moon.

TYPES OF STARS & GALAXIES: Stars Constellations - binary stars - their origin and types star clusters – globular clusters - types of variable stars - types of galaxies.

ORIGIN OF UNIVERSE: Big bang theory - pulsating theory - steady state theory - composition of universe expansion

REFERENCES:

1. K.D. Abyankar, Astrophysics of the solar system, University press, India (1999)

2. BaidyanathBasu, Sudhindra Nath Biswas And Tanuka Chattopadhyay, An Introduction To Astrophysics, Prentice Hall OfIndia, New Delhi (2010)

3. Prof. P. Devadas, The fascinating Astronomy, Devadas Telescopies, Chennai

4. R.P. Singhal, Elements of Space Physics, PHI, (2009)

COUR	SE DESIGNERS	
S.No.	Name of the Faculty	Mail ID
1	Dr. C. SENTHIL KUMAR	senthilbdu@gmail.com
2	Dr. R. SETHUPATHI	sethupathivmkv@gmail.com

17PHB	BS08		FU	NDAN	1ENTA	ALS OF	7	C	ategor	у	L	Т	Р	C	redit
				NANC	SCIE	NCE									
								F	C(BS)		3	0	0		3
DDEA															
PREAL The ge			raa ia ta	nroui	da an i	naiaht i	nto the	fundo	montal	a of non	osoiona	and no	notochny	ology. Tl	han tha
														n of nan	
materia			lunoma	uer fuis	rangin	5 nom	0,01,11	.cw, sy	11110515	, proper	ties, and	i charac	ienzairo.	n or nun	opnuse
PRER		TE													
	•	-													
COUR	SE OF	ЈЕСТ	IVES												
1	To ac	quire tl	ne knov	vledge	of basi	c scienc	ces req	uired to	o under	rstand th	e fundai	nentals of	of Nanoi	naterials	5.
2		_					-					inomater			
3	To kr	now the	e impo	rtance	of the	synthes	sis me	thod ad	dresse	d in the	materia	al prope	rties and	l give p	ractical
								es and	charact	erization	n; invest	igations	into the	various	factors
						aterials									
4	To kn	ow abo	out carb	on nar	tubes	5									
5				ous cha	racteriz	zation to	echniq	ues							
COUR															
On the	succes		-												
1.									nce and	l technol	0.	Understa	ind		
2.	To sy	nthesis	of nan	omater	ials by	various	s metho	od			(Create			
3.	To co	nstruct	the nat	nostruc	ture m	aterial b	y lithc	ographi	c techn	iques	(Create			
4.	To de nanot		ate the	prapar	ation, p	propertie	es and	applica	ation of	f carbon	1	Apply			
5.	To ex	amine	the nan	omater	ials by	various	s chara	cteriza	tion tec	chnique	1	Analyse			
MAPP	ING V	VITH	PROG	RAMN	AE OU	TCOM	IES A	ND PR	ROGRA	AMME	SPECII	FIC OU	тсомі	ES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	L	L	М	L	М			М			М			
CO2	S	М	М	М	М	М			М			М			
CO3	S	S	S	S	S	М			М			М			
CO4	S	S	S	S	S	М			М			М			
CO5	S	S	S	S	S	М			М			М			
S- Stro	ng; M-	Mediu	m; L-L	ow											
CAVE E	DUC														

INTRODUCTION

Nanoscale Science and Technology- Implications for Physics, Chemistry, Biology and Engineering-Classifications of nanostructured materials- nanoparticles -quantum dots, nanowires-ultra-thinfilms-multilayered materials. Length Scales involved and effect on properties: Mechanical, Electronic, Optical, Magnetic and Thermal properties. Introduction to properties and motivation for study (qualitative only).

PREPARATION METHODS

Bottom-up Synthesis-Top-down Approach: Precipitation, Mechanical Milling, Colloidal routes, Self-assembly, Vapour phase deposition, MOCVD, Sputtering, Evaporation, Molecular Beam Epitaxy, Atomic Layer Epitaxy, MOMBE.

FOUNDATION - BASIC SCIENCES - SYLLABUS

17CM	ES02						MECH BASIC			Ca	itegory	L	Т	Р	Credit
170101					ENGIN					F	C(ES)	4	0	0	4
PREAM	MBLE-	The ai	m of th	ne subj	ect is t	o prov	ide a fı	indame	ental kr	nowled	ge of ba	sic Civi	il Engiı	neering	5
PRERI	EQUIS	TE - 1	NIL												
COUR	SE OB	JECT	IVES												
1	To un	derstai	nd the	basic c	oncept	s of su	irveyin	g and o	constru	ction m	aterials				
2	To im	part ba	asic kn	owledg	ge aboi	ıt buile	ding co	mpone	ents.						
COUR	SE OU	TCON	AES												
On th	e succe	ssful c	omple	tion of	the co	urse, s	tudents	will b	e able t	to			1		
CO1. A	An abili	ty to aj	pply kr	nowled	ge of r	nather	natics,	science	e, and e	enginee	ring.			App	oly
CO2. A	n abilit	y to de	esign a	nd con	duct ex	perim	ents, as	s well a	as to an	alyze a	nd inter	pret dat	a.	Ap	oly
MAPP	ING W	ITH P	ROG	RAMN	ЛЕОЦ	JTCO	MES A	ND P	ROGR	RAMM	E SPEC	CIFIC	OUTC	OMES	5
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	L	-	М	S	-	-	-	-	-	-	М	-	-
CO2 S- Stror	S	М	L	S	М	S	-	-	М	-	-	-	-	S	-
determi CIVIL BUILD FOUNI SUPER plasterin – Basic: TEXT 1. REFER	nation of ENGII DING C DATIO STRU ng – Mo s of Into BOOK 1."Bas RENCE Ramar	of area NEER OMP NS: T CTUR echanic erior D S: ic Civi S: nrutha	s – illu ING M ONEN ypes, l ypes, l E: Bri cs – In esign a il and l m S., "	ISTRATIV IATE ITS AN Bearing ick ma ternal a and La Mechan	e exan RIALS ND ST g capac sonry - and ext ndscap nical E Civil E	nples. S: Bric RUCT city – F - stone ternal f bing. nginee Cnginee	ks – sto TURES Require masor forces - ering", ering",	ones – s : ement o - stress VMU, Dhanj	sand – of good eams – s – strai (2017) patrai F	cement founda columi n – ela: . Comp Publishi	t – conc ations. ns – lint	rete – s els – ro Types I., New	ofing – of Brid Delhi,2	floori ges an	•
COUR	SE DE	SIGNI	ERS												
S. No.	Nan	ne of th	ne Faci	ulty	De	esignat	tion	Dep		t / Nam ollege	e of the	;	Ma	uil ID	
1	S. Suj	oriya			Assis	t. Prof	essor	CIV	IL / VN	MKVE	С	m		_	mail.co
2	C. Kathirvel Assist. Professor CIVIL / VMKVEC geologykathir@gmail.co m												nail.co		

150		I	B-BAS	SICS	OF M	ECH	ANIC	CAL	Ca	ategory	L	Т		Р	C	redit
I/C	MES02			ENGINEERING FC(ES) 4 0 0 4												4
and A	Mechar	oile en	igineer	ing. A	n eng	ineer	needs	to un	derstai	ne areas and, the	•	•		-		•
Prere	quisite	-NIL														
Cours	se Obje	ctive														
1	To dem	onstra	te the	princip	oles of	castin	g and 1	metal j	oining	process	es in ma	anufactu	ıring	g.		
2	To desc	cribe a	nd to a	pply t	he in d	epth k	nowle	dge in	autom	otive en	gines an	id impo	rtan	t con	nponen	ts.
Cours	se Outc	omes:	On th	e succ	essful	comp	letion	of the	cours	e, stude	nts will	be able	e to			
CO1.	Illustr	ate the	e applio	cation	of cast	ing an	d meta	al joini	ng pro	cesses ir	ı manuf	acturing	5	Ap	ply	
CO2.	Demo	nstrate	e the op	peratic	on of a	utomot	tive en	gines a	and im	portant o	compon	ents		Ap	ply	
Mapp	oing wit	h Prog	gramn	ne Out	tcome	s and l	Progra	amme	Specif	ic Outc	omes					
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PS	01	PSO2	PSO3
CO1	S	М	М	L	L	М	-	-	-	-	-	М	Ι	_	-	-
CO2	S	М	L	L	L	М	-	-	-	-	-	М	Ι		-	-
S- Str	ong; M-l	Mediu	m; L-L	ow												
Sylla	ous															
FOU	NDRY A	AND V	WELD	ING												
Mould Weldi	ting app	licatic troduc	on. ction t	o wel	ding,	Classif	fication	n – G	as we	on, Fundling, A		-				n Sand Isma –
	OMOTI		<u> </u>						ррпса	uons.						
									d Dies	el Engin	es - Co	onstruct	ion	and	workin	g,
										Governo						
	y system	ns, Ext	naust ei	missio	n and	control										
Text]	Books															
1	Basic	civil	and M	lechan	ical Er	igineer	ring, S	chool o	of Mec	hanical	Enginee	ering Sc	ienc	es, V	VMU, S	Salem
Refer	ence Bo															
1	K.Ver	nugopa	al, Bas	ic Mec	chanica	ıl Engi	neerin	g, Anu	ıradha	Publicat	tions, Cl	hennai				
2	NR. B	lanapu	ırmath,	, Basic	Mech	anical	Engin	eering,	Vikas	s Publica	tions, N	loida				
3	TJ.Pra	abu, Ba	asic M	echani	cal En	gineer	ing, So	CITEC	H Pub	olications	s, Chenr	nai				
Cours	se Desig	gners														
S.No	Facult	ty Nan	ne	Desi	gnatio	n		epartn f the C			Email ic	1				
1	S. Dur	aithilag	gar	Asso	ciate P	rofesso		lech / V	<u> </u>		sduraithi	lagar@v	mkv	ec.ec	<u>lu.in</u>	
2	T.Raja	l		Assis	stant Pr	ofessor	· M	lech / V	MKVI	EC	rajat@vr	nkvec.ec	<u>lu.in</u>			

17CN	4ES81				ING S					D	Categ	ory	L	Т	Р	Credit
1701	112501	P.	ART A	A - BA	SIC C	IVIL	ENGI	NEER	ING I	AB	FC(E	S)	0	0	4	2
Engine Engine the hal		Skills studer electir	nts. It o ng righ	leals v	vith fit	ting, c	arpent	ry, she	et met	al and						natronics 11 induce
COUI	RSE O	BJEC	TIVE	S												
1	To u	nderst	and the	e basic	conce	pts of	survey	ing an	d cons	truction	materi	als.				
2	To ir	npart	basic k	nowle	dge ab	out bu	ilding	compo	nents.							
	RSE O															
On t	he suce	cessfu	l comp	letion	of the	course	, stude	nts wi	ll be at	ole to						
CO1.	Prepa	re the	differe	nt type	es of fi	tting.									App	oly
CO2.	Prepa	re the	differe	ent type	es of jo	oints us	sing wo	ooden	materia	al					App	oly
MAPI	PING	WITH	I PRO	GRAN	AME (OUTC	OME	S ANI) PRO	GRAM	ME S	PECI	FIC O	UTC	COM	ES
COS	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO 11	PO 12	PSO 1	F	2 SO	PSO3
CO1	S	L	L	L	-	L	L	М	L	L	L	L	М		-	-
CO2	S	S	S	L	L	-	L	L	L	L	S	L	-		S	-
S- Stro	ong; M	-Medi	um; L-	Low			I	1	I		1	I	1	1		L
тют				ma												

LIST OF EXPERIMENTS:

BUILDINGS:

1. Study of plumbing and carpentry components of residential and industrial buildings, Safety aspects.

PLUMBING WORKS:

- 2. Study of pipeline joints, its location and functions: valves, taps, couplings, unions, reducers, elbows in household fittings.
- 3. Study of pipe connections requirements for pumps and turbines.
- 4. Preparation of plumbing line sketches for water supply and sewage works.
- 5. Hands-on-exercise: Mixed pipe material connection Pipe connections with different joining components.
- 6. Demonstration of plumbing requirements of high-rise buildings.

CARPENTRY USING POWER TOOLS ONLY:

- 7. Study of the joints in roofs, doors, windows and furniture.
- 8. Hands-on-exercise: Wood work, joints by sawing, planning and cutting.

TEXT BOOKS:

1. "Laboratory Reference Manualby VMKVEC Civil Engineering Department

COUR	RSE DESIGNERS			
S.No	Name of the Faculty	Designation	Department / Name of the College	Mail ID
1.	S.Supriya	Assist. Professor	Civil / VMKVEC	jansupriyanair@gmail.c om
2	A.Fizoor Rahman	Assist. Professor	Civil / VMKVEC	Afrahman20@gmail.co m

		ENG	SINE	ERING	SKII LAB	LLS P	RACT	ICE	Cate	gory	L	Т	Р	Credi	t
17CM	ES81		B.B	ASIC ENG			CAL		FC((ES)	0	0	4	2	
Pream	ble	1									<u> </u>	1	1	1	
		a hanc	ls-on t	raining	g pract	ice to	Mecha	nical	Engine	eering	studer	nts. It o	deals wi	th fitting	g,
														ting rigl	
tools, p	lannin	g the j	ob and	l its exe	ecution	1.									
Prereq	uisite	-NIL													
Course	e Obje	ctive													
1 7	Γo perf	form th	ne prac	tice in	differe	ent typ	es of fi	itting _I	process	ses.					
				using v											
					0		oining		sses.						
4]	Го den	nonstra	te the	patterr	ı using	found	lry proc	cesses							
Course	e Outc	omes:	On th	e succ	essful	comp	letion of	of the	course	e, stud	ents v	vill be	able to		
CO1.	Perfo	orm the	diffe	rent typ	bes of t	fitting	using I	MS pla	ate.					Apply	
CO2.							ising w			rial				Apply	
CO3.	Dem	onstrat	the the	lifferer	it type	s of jo	ints in	metal	by Arc	e Weld	ing			Apply	
CO4.	Utiliz	ze the	differe	nt type	s of gi	een sa	nd mo	uld	•					Apply	
Mappi	ng wit	h Prog	gramr	ne Out	comes	s and l	Progra	mme	Specif	ic Out	come	5			
	PO	PO	PO	PO	PO	PO	PO	РО	PO	PO	PO	PO	PSO	PSO	I
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	(
CO1	S	-	L	-	-	-	-	-	M	-	-	-	L	-	
CO2	S	_	L	_	-	-	-	_	M	_	_	_	L	_	-
CO3	S	-	-	-	-	-	-	_	-	_	-	_	L	-	
CO4	S	_	L	_		_	_	_	М	_		_	L	-	
S- Stro				-Low			_	_	111	_		_	L		
Syllabi		-wicu	<u>uiii, i</u>	<u>-10</u>											
LIST (PERI	MEN	ГS											
Tee – F	Fitting														
Vee – I															
Prepara															
Prepara					piece	patter	n								
Half- L															
Dove T				try											
Lap Joi Butt Jo															
Text B		veluinį	5												
1 1 1		IC M	ЕСНА	NICA	LFN	CINE	ERIN	CIA	вма	NITAT					
Refere							171/11/1	J , L A	D MIA						
1			al Ra	sic Me	chanic	al Eng	ineerin	g An	uradha	Puhli	cations	Cher	mai		
2							Engin								
<u>2</u> Course			arman	., 1000		ianical	Ligin	Sering	, , ina		Junon	.5, 1101	u		
S.No		, lty Nai	ne	Desig	nation		Depa the C		t / Nan	ne of	Ema	il id			
								onege	,						
1	VK	Krishn	an	Assoc Profes				<u> </u>	IKVEC	C	<u>vkkr</u>	ishnan	@vmkv	ec.edu.ii	1

17	CSES01	ESSENTIALS OF COMPUTING	CATEGORY	L	Т	Р	CREDIT
1/	CSESUI	ESSENTIALS OF COMPUTING	FC(ES)	3	0	0	3
PRI	EAMBLE	I		I		1	
		to provide the fundamental concepts of C					
		emphasizing principles application packa	ges. Studying the	fundam	entals c	oncept	ts of
		solve the real world application.					
PKI	ERQUISIT	E-NIL					
CO	URSE OBJ	IECTIVES					
1		basic knowledge of hardware and softwa	are components of	comput	ers.		
2	To introdu	ce and demonstrate various software appl	ication packages.	^			
3	To study P	roblem solving Techniques and program	development cycle	.			
4	To learn ab	bout various algorithm and identifying the	algorithm efficier	ncy.			
5	To learn di	fferent algorithm for various application					
	URSE OUT						
		ful completion of the course, students					
CO	l. Basic know	wledge on hardware and software termino	logies.			Reme	mber and
						Under	rstand
CO2	2. Demonstra	ation about various Application Packages	like MS-word, MS	S- Excel	etc.	Apply	/
CO	3. Understand	d Program Devolvement Cycle and apply	various Problem S	Solving		Under	rstand,
Tech	nniques.					Apply	Ι.
00	4 7 1						
CO^2	Identifying	g and analyzing the efficiency of Algorith	ms.				rstand.
\overline{CO}	5. Implement	ation of Algorithms for various concepts.				Unde	rstand and
						Apply	

OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO 3
CO1	S	-	-	-	-	-	-	-	-	-	-	-	L		
CO2	S	М	-	-	-	-	-	-	-	-	-	-	L		
CO3	S	S	S	-	М	-	-	-	-	-	-	-	L		
CO4	S	S	S	-	S		-	-	-	-	-	-	L		
CO5	S	М	М	-	М	-	-	-	-	-	-	-	L		
S-S	trong;	M-M	lediun	n; L-Lo	W										

UNIT-I

BASICS OF COMPUTER AND INFORMATION TECHNOLOGY: Computer – Generations, Types of Computers, Block diagram of a computer – Components of a computer system –Hardware and software definitions – Categories of software – Booting – Installing and Uninstalling a Software –Software piracy –Software terminologies – Applications of Computer – Role of Information Technology – History of Internet – Internet Services.

UNIT-II

SOFTWARE APPLICATIONS: Office Automation: Application Packages – Word processing (MS Word) – Spread sheet (MS Excel) – Presentation (MS PowerPoint).

UNIT-III

PROBLEM SOLVING METHODOLOGIES: Problems Solving Techniques - Program Development Cycle – Algorithm Development – Flow chart generation –Programming Constructs (Sequential, Decision-Making, Iteration) – Types and generation of programming Languages.

UNIT-IV

INTRODUCTION TO ALGORITHMS: Implementation of Algorithms – program verification – The efficiency of algorithms – The analysis of algorithms.

UNIT-V

IMPLEMENTATION OF ALGORITHMS: Fundamental Algorithms: Introduction – Exchanging the values of two variables – Counting – Summation of a set of Numbers – factorial computation – Generation of the Fibonacci sequence – Reversing the digits of an integer.

TEXT BOOKS:

- 1. Essentials of Computer Science and Engineering", Department of Computer Sciences, VMKVEC, Salem, Anuradha Publishers, 2017.
- 2. Dromey.R.G, "How to Solve it by Computer", Prentice-Hall of India, 1996.

REFERENCES:

1. Aho.A.V., Hopcroft.J.E and Ullman.J.D, "The Design and Analysis of Computer Algorithms", Pearson Education, 2004.

2. Knuth,D.E., "The Art of computer programming Vol 1:Fundamental Algorithms", 3rd Edition, Addison Wesley,1997.

COU	RSE DESIGNERS			
S.No	Name of the Faculty	Designation	Department / Name of	Mail ID
			the College	
1	Dr. NitishaAggarwal	Associate Professor	CSE / AVIT	nitishaaggarwal@avit.ac.in
2	K.Karthik	Assistant Professor	CSE / AVIT	karthik@avit.ac.in
3	Dr.V.Amirthalingam	Associate Professor	CSE / VMKVEC	amirthalingam@vmkvec.edu.in
4	Mrs.T.Geetha	Assistant Professor	CSE / VMKVEC	geetha@vmkvec.edu.in

170	CECO	_	DDA4	~D ^ N	MINO	TAT DY	VTHA		CATI	EGORY	L	Т	Р	CR	EDIT
1703	SES0:	5	PROG	JKAN	IMING	IN P	Y I HO		FC	C(ES)	3	0	0		3
PREA	MBL	Æ													
The pu	irpose	of thi	s course	is to i	ntroduce	e Pyth	on, a re	emarkat	ly pov	verful dy	namic p	orogrami	ning l	anguage	e to
							g with	applica	tion do	omain. P	ython ha	as evolve	ed on 1	more po	pular
			source	progra	mming	tool									
PRER	QUIS	SITE													
NIL															
COUF	RSE ()BJE(CTIVES	5											
1		-			edge on	•	<u> </u>			<u> </u>					
2	To	introd	uce diffe	erent n	nethods	in list,	string,	, tuple, c	liction	ary and	sets.				
3		-			ograms				stater	nents.					
4					function										
5		-		xcepti	on handl	ing fu	nctions	s, file co	oncepts	s and CS	V and J	SON.			
			OMES												
			-		the cour	-									
							indent	ation, to	kens,	input and	d output		ember		
					program								erstand	1	
									-	nd Dicti		Appl	-		
	-	n solut	tions for	comp	lex prog	rams ı	ising d	ecision	makin	g and lo	oping	Unde	erstanc	and Ap	oply.
statem		on the	function		nome mit	h all t	haaan	aanta 1:1	ra lami	bda, dec	anatona	Und	noton	1 Apply	and
and ge		-	Tunction	i prog	rains wit	II all t	ne con	cepts in	le fam	bua, dec	orators	analy		l, Apply	and
			e excepti	ion ha	ndling p	rogran	ns. file	concept	t progr	ams and		Appl			
unders	tand t	he cor	icepts of	f CSV	and JSC	N.		·····	- F 0-				5		
							MES	AND P	ROGI	RAMMI	E SPEC	IFIC O	UTCC	OMES	
COS	РО	PO	PO3	РО	PO5	PO	PO	PO8	PO	PO10	PO11	PO12	PS	PSO	PSO
200	1	2	105	4	105	6	7	100	9	1010	1011	1012	01	2	3
CO1	S	М	L	-	М	L	-	-	L	М	М	S	L	-	-
CO2	S	М	L	-	-	L	_	_	L	М	М	S	L	_	_
	5											~	т		
CO3	S	S	S	S	М	L	-	-	L	М	М	S	L	-	-
CO4	S	S	S	S	-	L	_	-	S	М	М	S	L	-	-
	S	M	M	_									L		
CO5			3.6	-	-	L	-	-	S	Μ	Μ	S		-	-

UNIT-1 INTRODUCTION

Introduction to python-Advantages of python programming-Tokens-Variables-Input/output methods-Data types-Operators

UNIT-2 DATA STRUCTURES

Strings-Lists-Tuples-Dictionaries-Sets

UNIT-3 CONTROL STATEMENTS

Flow Control-Selection control Structure-if-if-else-if-elif-else-Nested if iterative control structures-while loop, for loop and range.

UNIT-4 FUNCTIONS

Declaration-Types of Arguments-Fixed arguments, variable arguments, keyword arguments and keyword variable arguments-Recursions-Anonymous functions: lambda- Decorators and Generators.

UNIT-5 EXCEPTION HANDLING

Exception Handling-Regular Expression-Calendars and clock files: File input/output operations-Dictionary operations-Reading and writing in structured files: CSV and JSON.

TEXT BOOKS:

- 1. Bill Lubanovic, "Introducing Python Modern Computing in Simple Packages", 1st Edition, O'Reilly Media, 2014.
- 2. Programming With Python Book 'Himalaya Publishing House Pvt Ltd
- 3. "<u>Dive Into Python</u>" by Mark Pilgrim

REFERENCES:

- 1. Mark Lutz, "Learning Python", 6th Edition, O'Reilly Media, 2014.
- 2. David Beazley, Brian K. Jones, "Python Cookbook", 3rd Edition, O'Reilly Media, 2015.
- 3. Mark Lutz, "Python Pocket Reference", 6th Edition, O'Reilly Media, 2015.

COUR	SE DESIGNERS			
S.No.	Name of the Faculty	Designation	Department / Name of the College	Mail ID
1	K.Karthik	Assistant Professor	CSE / AVIT	karthik@avit.ac.in
2	E.Srividhya	Assistant Professor	CSE / AVIT	srividhya@avit.ac.in
3	Mrs.T.Geetha	Assistant Professor	CSE / VMKVEC	geetha@vmkvec.edu.in
4	Mrs. T. Narmadha	Assistant Professor	CSE / VMKVEC	narmadha@vmkvec.edu.in

170	CECO/	,	PRO	OGRA	MMI	NG IN	1		Catego	ry	L	1	r 1	P (Credit
1/0	SES8.	3]	РҮТН	ON L	AB			FC(ES	5)	0	() (4	2
PREA This la file cor	aborate	ory ena		e stude	ents cle	early u	nderst	tand th	e basic	concepts	of pyth	on, co	ntrol st	atemer	its and
PRER	QUIS	ITE -	NIL												
COU	RSE O	UTCC	OMES												
									be able						
							l inder	ntation	ı, tokens	, input a	nd outpu		ememb		
			ous exa										ndersta		
CO2. I	Learn t	the diff	erent n	nethod	s invo	lved in	n List,	String	g, Tuples	s and Die	ctionary.		ememb		
<u> </u>		1	C				•	1 .	· 1	· 1	1 •		ndersta		1
	U	soluti	ons for	compl	lex pro	ograms	using	g decis	ion mak	ing and	looping		ndersta		
statem		n tha f	unction	nrom	amen	with all	the c	oncont	ts like la	mbda d	acorator		nalyze a ndersta		
and ge		•	unction	i progi	ams v	viui all	ule C	oncept	is like la	moua, u	corator		ndersta alyze a		
			excenti	on har	ndling	progra	ims fi	ile con	cept pro	grams a	nd		pply		inan
			cepts of						p. p.o	or units a			rr'J		
							OME	S AN	D PRO	GRAM	AE SPE	CIFIC	COUT	COM	ES
COC	PO	DOO	PO	PO	РО	PO	РО	PO	DOO	DO10	DO11	DO1	, PS	PS	PSO
COS	1	PO2	3	4	5	6	7	8	PO9	PO10	PO11	PO12	2 01	O2	3
CO1	S	М	L	-	-	-	-	-	-	-	-	-	L		
CO2	S	М	L	-	-	-	-	-	-	-	-	-	L		
CO3	S	М	М	-	-	-	-	-	-	-	-	-	L		
CO4	S	М	М	-	-	-	-	-	-	-	-	-	L		
CO5	S	М	М	-	-	-	-	-	-		-	-	L		
S- Stro	ong; M	-Medi	um; L-I	Low		. <u> </u>		1							
	-		MENT												
1. Wri	te a pr	ogram	to sum	of ser	ies of	N natu	ral nu	mbers							
			to calci												
	-	•	to gene					•							
			to calcu							1					
	-	•		•					using if o			tional	00mt1	atatar	ante
									atic equa				control	staten	ients
	-	•		•					ising col		.	1			
			to impl						5 110 00	neept of	anays				
			to mp						cepts						
REFE							0		T						
	1. Ma	rk Lutz	z, "Lear	ming F	ython	", 5th	Editio	n, O'R	eilly Me	edia, 201	3.				
			•			•			ook", 3rc			•	dia, 20	13.	
	3. Ma	rk Lutz	z, "Pyth	ion Po	cket R	eferen	ce", 5	th Edi	tion, O'H	Reilly M	edia, 20	14.			
COUF	OCE D	FGICT	IFDC												
S.No.			the Fac	ulty	Desi	gnatior	1	Depa Colle	artment /	' Name o	of the		Mail II)	
1	K.1	Karthik	ζ.		Assis Profe				/ AVIT]	karthik	@avit.	ac.in

2	E.Srividhya	Assistant Professor	CSE / AVIT	srividhya@avit.ac.in
3	Mrs.T.Geetha	Assistant Professor	CSE / VMKVEC	geetha@vmkvec.edu .in
4	Mrs. T .Narmadha	Assistant Professor	CSE / VMKVEC	narmadha@vmkvec. edu.in

A. BASIC ELECTRICAL ENGINEERINGFC(ES)4004REAMBLEis a preliminary course which highlights the basic concepts and outline of Electrical engineering. The necets discussed herein are projected to deliver explanation on basic electrical engineering. For beginners of engineering graduates.REREQUISITE-NILOURSE OBJECTIVESTo understand the electrical inventions, basic concepts of AC and dc circuit and basic laws of electrical engineering.To gain knowledge about the working principle, construction, application of DC and AC machines and measuring instruments.TO understand the fundamentals of safety procedures, Earthing and Power system.OURSE OUTCOMESA inderstand the fundamentals of safety procedures, Earthing and Power system.OURSE OUTCOMESA inderstand the fundamentals of safety procedures, Earthing and Power system.OURSE OUTCOMESA inderstand the fundamentals of safety procedures, Earthing and Power system.OURSE OUTCOMESA inderstand the basic concepts of measuring instruments, electrical quantitiesApplyO 1: Explain the evolution of electrical noads, power rating of electrical machineriesO 1: Analyze the various types of electrical loads, power rating of electrical and non-conventional sources.O 2: Compare the various types of electrical power generation systems by application.O 1: Explain the electrical safety and protective devices.O FOO PO P	17EE	ES03	BA	SICS (OF ELI		CAL A		ELEC	FROM	NICS	Cate	gory	L	Т	Р	Credit
is a preliminary course which highlights the basic concepts and outline of Electrical engineering. The neepts discussed herein are projected to deliver explanation on basic electrical engineering for beginners of lengineering graduates. REREQUISITE-NIL OURSE OBJECTIVES To understand the electrical inventions, basic concepts of AC and dc circuit and basic laws of electrical engineering. To gain knowledge about the working principle, construction, application of DC and AC machines and measuring instruments. To understand the fundamentals of safety procedures, Earthing and Power system. OURSE OUTCOMES a the successful completion of the course, students will be able to D 1: Explain the evolution of electricity, name the inventors, electrical quantities d basic laws of electrical engineering. D 2: Demonstrate Ohm's and Faraday's Law. D 3: Understand the basic concepts of measuring instruments, electrical machineries D 4: Analyze the various types of electrical loads, power rating of electrical achineries and energy efficient equipment. D 5: Explain the electrical safety and protective devices. D 6: Compare the various types electrical power generation systems by application conventional and non-conventional sources. Analyze				A.]	BASIC				NGINI	EERI	NG	FC(l	ES)	4	0	0	4
neepts discussed herein are projected to deliver explanation on basic electrical engineering for beginners of lengineering graduates. REREQUISITE—NIL OURSE OBJECTIVES To understand the electrical inventions, basic concepts of AC and dc circuit and basic laws of electrical engineering. To gain knowledge about the working principle, construction, application of DC and AC machines and measuring instruments. To understand the fundamentals of safety procedures, Earthing and Power system. DUESE OUTCOMES Ante successful completion of the course, students will be able to O 1: Explain the evolution of electricity, name the inventors, electrical quantities Apply O 2: Demonstrate Ohm's and Faraday's Law. Apply O 3: Understand the basic concepts of measuring instruments, electrical machineries Analyze the various types of electrical loads, power rating of electrical achineries and energy efficient equipment. O 3: Explain the electrical safety and protective devices. O 4: Analyze the various types of electrical loads, power rating of electrical achineries and energy efficient equipment. O 1: Explain the electrical safety and protective devices. O 5: Explain the electrical safety and protective devices. O 1: PO1 PO2 PO3 PO4	PREA	AMBL	E													11	
analyze Analyze O1 S M L S		-	-			-	-			-						-	-
REREQUISITE-NIL OURSE OBJECTIVES To understand the electrical inventions, basic concepts of AC and dc circuit and basic laws of electrical engineering. To gain knowledge about the working principle, construction, application of DC and AC machines and measuring instruments. To understand the fundamentals of safety procedures, Earthing and Power system. OURSE OUTCOMES n the successful completion of the course, students will be able to D1 : Explain the evolution of electricity, name the inventors, electrical quantities Remember D 2: Demonstrate Ohm's and Faraday's Law. Apply D 3: Understand the basic concepts of measuring instruments, electrical machineries Understand d is applications. Understand D 4: Analyze the various types of electrical loads, power rating of electrical achineries and energy efficient equipment. Understand D 5: Explain the electrical safety and protective devices. Understand D 6: Compare the various types electrical power generation systems by application conventional and non-conventional sources. Analyze DS PO1 PO2 PO3 PO4 PO5 PO6 P P PO10 PO11 PS PSO2 PSO2 PSO2 DS M L S<		^			-	ojected	to deliv	ver ex	planat	ion or	n basic e	electrica	l engin	leeri	ng f	or begi	nners of
OURSE OBJECTIVES To understand the electrical inventions, basic concepts of AC and dc circuit and basic laws of electrical engineering. To gain knowledge about the working principle, construction, application of DC and AC machines and measuring instruments. To understand the fundamentals of safety procedures, Earthing and Power system. OURSE OUTCOMES a numerical completion of the course, students will be able to O1: Explain the evolution of electricity, name the inventors, electrical quantities d basic laws of electrical engineering. Apply O 2: Demonstrate Ohm's and Faraday's Law. D 3: Understand the basic concepts of measuring instruments, electrical machineries Understand d its applications. Understand D 4: Analyze the various types of electrical loads, power rating of electrical achineries and energy efficient equipment. Understand D 5: Explain the electrical safety and protective devices. Understand D 6: Compare the various types electrical power generation systems by application conventional and non-conventional sources. Analyze Apply Apply Analyze D 6: Compare the various types of PO6 PO PO PO PO PO PO PO PO PO PO<			00														
To understand the electrical inventions, basic concepts of AC and dc circuit and basic laws of electrical engineering.To gain knowledge about the working principle, construction, application of DC and AC machines and measuring instruments.To understand the fundamentals of safety procedures, Earthing and Power system.OURSE OUTCOMESan the successful completion of the course, students will be able toO1: Explain the evolution of electricity, name the inventors, electrical quantities d basic laws of electrical engineering.RememberO 2: Demonstrate Ohm's and Faraday's Law.ApplyO 3: Understand the basic concepts of measuring instruments, electrical machineries d its applications.UnderstandO 4: Analyze the various types of electrical loads, power rating of electrical achineries and energy efficient equipment.UnderstandO 5: Explain the electrical safety and protective devices.UnderstandO and NC machineries d its applications.UnderstandO and non-conventional sources.POI PO2PO3PO4PO5PO6PO 7PO8 9PO10PO11PO1 2PS02 O1PS02 O1PS02 OOSML-SLLO3LSLSSLLO4: AnalyzePO3PO6PO6PO 7PO8 9PO10	PRER	REQU	ISITE	-NIL													
electrical engineering.To gain knowledge about the working principle, construction, application of DC and AC machines and measuring instruments.To understand the fundamentals of safety procedures, Earthing and Power system.OURSE OUTCOMESOURSE OUTCOMESRememberO I: Explain the evolution of electricity, name the inventors, electrical quantities d basic laws of electrical engineering.RememberO 1: Explain the evolution of electricity, name the inventors, electrical quantities d basic laws of electrical engineering.ApplyO 2: Demonstrate Ohm's and Faraday's Law.ApplyO 3: Understand the basic concepts of measuring instruments, electrical machineries d its applications.UnderstandO 4: Analyze the various types of electrical loads, power rating of electrical achineries and energy efficient equipment.UnderstandO 5: Explain the electrical safety and protective devices.O 6: Compare the various types electrical power generation systems by application conventional and non-conventional sources.ApplyAnalyzeO 5: Explain the electrical safety and protective devices.O 1S M KCOMPERSAMME OUTCOMESAnalyzeO 2: Dompare the various types electrical power generation systems by application conventional and non-conventional sources.O 5: Explain the electrical safety and PO5PO6 <td< td=""><td>COU</td><td>RSE C</td><td>BJEC</td><td>CTIVE</td><td>S</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	COU	RSE C	BJEC	CTIVE	S												
To gain knowledge about the working principle, construction, application of DC and AC machines and measuring instruments.To understand the fundamentals of safety procedures, Earthing and Power system.OURSE OUTCOMESRememberDI Successful completion of the course, students will be able toD1: Explain the evolution of electricity, name the inventors, electrical quantities d basic laws of electrical engineering.ApplyO 2: Demonstrate Ohm's and Faraday's Law.ApplyO 3: Understand the basic concepts of measuring instruments, electrical machineries d its applications.UnderstandO 4: Analyze the various types of electrical loads, power rating of electrical achineries and energy efficient equipment.UnderstandO 5: Explain the electrical safety and protective devices.Understand the output basic concepts of measuring instruments, electrical machineries achineries and energy efficient equipment.UnderstandO 5: Explain the electrical safety and protective devices.Understand AnalyzeO 6: Compare the various types electrical power generation systems by application conventional and non-conventional sources.M hA PPING WITH PROGRAMME OUTCOVERS AND PROGRAMME SPECIFIC OUTCOMESO 5PO1PO1PS1PS2O 5NO 1PO3PO6	1					cal inve	entions,	basic	c conce	epts of	AC and	d dc circ	uit and	l bas	ic la	ws of	
To understand the fundamentals of safety procedures, Earthing and Power system.OURSE OUTCOMESan the successful completion of the course, students will be able toD 1: Explain the evolution of electricity, name the inventors, electrical quantities d basic laws of electrical engineering.RememberD 2: Demonstrate Ohm's and Faraday's Law.ApplyD 3: Understand the basic concepts of measuring instruments, electrical machineries d its applications.UnderstandD 4: Analyze the various types of electrical loads, power rating of electrical achineries and energy efficient equipment.UnderstandD 5: Explain the electrical safety and protective devices.UnderstandD 6: Compare the various types electrical power generation systems by application conventional and non-conventional sources.AnalyzeAnalyzeApplyOdd PO1PO1PO2PO3PO4PO5PO6POPO1PO2PO3PO6POPO1PO1PO2PO3PO6POPO1PO1PO2PO3PO6POPO1PO1PO2<	2					t the wo	orking p	orinci	ple, co	nstruc	tion, ap	plication	n of DC	C and	d AC	C mach	ines and
To understand the fundamentals of safety procedures, Earthing and Power system.OURSE OUTCOMESan the successful completion of the course, students will be able toD 1: Explain the evolution of electricity, name the inventors, electrical quantities d basic laws of electrical engineering.RememberD 2: Demonstrate Ohm's and Faraday's Law.ApplyD 3: Understand the basic concepts of measuring instruments, electrical machineries d its applications.UnderstandD 4: Analyze the various types of electrical loads, power rating of electrical achineries and energy efficient equipment.UnderstandD 5: Explain the electrical safety and protective devices.UnderstandD 6: Compare the various types electrical power generation systems by application conventional and non-conventional sources.AnalyzeAnalyzeApplyOdd PO1PO1PO2PO3PO4PO5PO6POPO1PO2PO3PO6POPO1PO1PO2PO3PO6POPO1PO1PO2PO3PO6POPO1PO1PO2<		mea	suring	instrur	nents.												
OURSE OUTCOMES a the successful completion of the course, students will be able to D 1: Explain the evolution of electricity, name the inventors, electrical quantities Remember Apply D 2: Demonstrate Ohm's and Faraday's Law. O 2: Demonstrate Ohm's and Faraday's Law. O 3: Understand the basic concepts of measuring instruments, electrical machineries Understand d its applications. O 4: Analyze the various types of electrical loads, power rating of electrical achineries and energy efficient equipment. Understand D 5: Explain the electrical safety and protective devices. Understand O 6: Compare the various types electrical power generation systems by application conventional sources. APPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES O 5: Explain the electrical safety and protective devices. O 10 PO1 PO1 PS PSO2	3					nentals	of safe	ty pro	ocedure	es, Ea	rthing a	nd Powe	er syste	em.			
D1: Explain the evolution of electricity, name the inventors, electrical quantities d basic laws of electrical engineering.RememberD2: Demonstrate Ohm's and Faraday's Law.ApplyD3: Understand the basic concepts of measuring instruments, electrical machineries d its applications.UnderstandD4: Analyze the various types of electrical loads, power rating of electrical achineries and energy efficient equipment.AnalyzeD5: Explain the electrical safety and protective devices.UnderstandD6: Compare the various types electrical power generation systems by application conventional and non-conventional sources.AnalyzeApplyAnalyzeAnalyzeDSPO1PO2PO3PO4PO5PO6PO 7PO8PO 9PO10PO11PO1 2PS02 O1PS02 PS02PS02DSPO1PO2PO3PO4PO5PO6 7PO 7PO8 9PO10PO11 9PO1 2PS02 O1PS02 PS02DSMSSLLO2SMSSLLO3LSLLSSLLO4SMSLLSSLLO5LMSM-SLL<	COU	RSE C	UTC	OMES				• •			Ū.		•				
RememberRememberApplyApplyO 2: Demonstrate Ohm's and Faraday's Law.ApplyO 3: Understand the basic concepts of measuring instruments, electrical machineries d its applications.O 4: Analyze the various types of electrical loads, power rating of electrical achineries and energy efficient equipment.O 4: Analyze the various types of electrical loads, power rating of electrical achineries and energy efficient equipment.O 5: Explain the electrical safety and protective devices.UnderstandO 6: Compare the various types electrical power generation systems by application conventional and non-conventional sources.AnalyzeAnalyzeAnalyzeO PO3PO4PO5PO <td< td=""><td>On the</td><td>e succe</td><td>essful o</td><td>comple</td><td>tion of</td><td>the cour</td><td>rse, stud</td><td>dents</td><td>will be</td><td>able</td><td>to</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	On the	e succe	essful o	comple	tion of	the cour	rse, stud	dents	will be	able	to						
O 2: Demonstrate Ohm's and Faraday's Law. Apply O 3: Understand the basic concepts of measuring instruments, electrical machineries Understand O 3: Understand the basic concepts of measuring instruments, electrical machineries Understand O 4: Analyze the various types of electrical loads, power rating of electrical achineries and energy efficient equipment. Analyze O 5: Explain the electrical safety and protective devices. Understand O 6: Compare the various types electrical power generation systems by application conventional sources. Analyze APPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES Analyze OS PO1 PO2 PO3 PO4 PO5 PO6 P PO PO1 PO1 PS PSO2 PSO2 OS M L - S - - - - L - </td <td>CO 1:</td> <td>: Expl</td> <td>ain the</td> <td>e evolu</td> <td>tion of</td> <td>electric</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>cal quai</td> <td>ntities</td> <td></td> <td>R</td> <td>Rememl</td> <td>ber</td>	CO 1:	: Expl	ain the	e evolu	tion of	electric						cal quai	ntities		R	Rememl	ber
D 2: Demonstrate Onm's and Paraday's Law. Understand D 3: Understand the basic concepts of measuring instruments, electrical machineries ad energy efficient equipment. Understand D 4: Analyze the various types of electrical loads, power rating of electrical achineries and energy efficient equipment. Analyze D 5: Explain the electrical safety and protective devices. Understand D 6: Compare the various types electrical power generation systems by application conventional and non-conventional sources. Analyze APPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES Analyze D 5: Explain the electrical safety and protective devices. Analyze D 6: Compare the various types electrical power generation systems by application conventional sources. Analyze D 7 PO8 PO PO10 PO11 PS PSO2 PSO2 D 8 M L - S - - - - L L - - D 9 PO1 PO2 PO3 PO4 PO5 PO6 PO - - - L L - - - - - - - - - - - - -	und be		N 5 01 C		ai engin	cering.										Annly	7
d its applications. D 4: Analyze the various types of electrical loads, power rating of electrical Analyze achineries and energy efficient equipment. D 5: Explain the electrical safety and protective devices. D 6: Compare the various types electrical power generation systems by application conventional and non-conventional sources. Analyze																	
AnalyzeAnalyzeO 5: Explain the electrical safety and protective devices.UnderstandO 6: Compare the various types electrical power generation systems by application conventional and non-conventional sources.AnalyzeApplicationAnalyzeApplicationAnalyzeApplicationApplicationApplicationApplicationApplicationApplicationApplicationApplicationApplicationApplication <t< td=""><td></td><td></td><td></td><td></td><td>sic conc</td><td>epts of</td><td>measur</td><td>ring ii</td><td>nstrum</td><td>ents, e</td><td>electrica</td><td>l machi</td><td>neries</td><td></td><td>U</td><td>ndersta</td><td>und</td></t<>					sic conc	epts of	measur	ring ii	nstrum	ents, e	electrica	l machi	neries		U	ndersta	und
D S: Explain the electrical safety and protective devices. Analyze O 6: Compare the various types electrical power generation systems by application conventional and non-conventional sources. Analyze APPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES OS PO1 PO2 PO3 PO4 PO5 PO6 PO 77 PO8 PO 9 PO10 PO11 PO1 2 PS 01 PO1 PO1 2 PSO2 PSO2 PSO2 PSO2 OI S M L - S M - M L O2 S M S S M - M L O3 L S L - S M - L L - L L O4 S M S L L S S S - L L - L O3 L S M S L L S S M M - S - L L O5 L M S M - S M M S S M M - S - L L			•		•	•		cal lo	oads, j	power	rating	of elec	ctrical			Analyz	æ
Analyze Analyze APPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES OS PO1 PO2 PO3 PO4 PO5 PO6 PO PO PO1 PO1 PS PSO2 PSO2 PSO2 O1 S M L - S - - - - L L - - - - - L L - - - - - - L L - - - - - L L - <t< td=""><td>CO 5:</td><td>Expla</td><td>in the</td><td>electric</td><td>al safet</td><td>y and p</td><td>rotectiv</td><td>ve dev</td><td>vices.</td><td></td><td></td><td></td><td></td><td></td><td>U</td><td>Indersta</td><td>und</td></t<>	CO 5:	Expla	in the	electric	al safet	y and p	rotectiv	ve dev	vices.						U	Indersta	und
OS PO1 PO2 PO3 PO4 PO5 PO6 PO PO8 PO PO10 PO11 PO1 PS PSO2 PSO2 PSO2 O1 S M L - S - - - - - L L - - - - - L L - - - - - - L L - - - - - L L - - - - - - L L - - - - - - M - <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>wer g</td> <td>generat</td> <td>ion sy</td> <td>vstems b</td> <td>oy applic</td> <td>cation</td> <td></td> <td></td> <td>Analyz</td> <td>æ</td>								wer g	generat	ion sy	vstems b	oy applic	cation			Analyz	æ
03 PO1 PO2 PO3 PO4 PO3 PO6 7 PO8 9 PO10 PO11 2 01 PS02 PS02 PS03 01 S M L - S - - - - L L - - - 01 PS02 PS03 PS03 PS03 PS03 9 PS010 PO11 2 01 PS02 PS03 PS033 PS033 PS033 PS033<	MAP	PING	WITH	H PRO	GRAM	ME O	UTCO	MES	AND	PRO	GRAM	ME SPF	ECIFI	C OI	UTC	COME	S
D1 S M L - S - - - - - L L - - - - L L L - - - D1 S M L - S - - - - - L L L - - - D2 S M S S S - - - - M - - L L L - - - D3 L S S - - - M - - M L - - - D3 L L S S - - L L L L - - - D4 S M S S - - S - L L L L L L L L L L L L L L L L L L <thl< th=""> L L L<th>COS</th><th>PO1</th><th>PO2</th><th>PO3</th><th>PO4</th><th>PO5</th><th>PO6</th><th></th><th>PO8</th><th></th><th>PO10</th><th>PO11</th><th></th><th></th><th></th><th>PSO2</th><th>PSO3</th></thl<>	COS	PO1	PO2	PO3	PO4	PO5	PO6		PO8		PO10	PO11				PSO2	PSO3
D2 S M S S - - - M - - M L - - - D2 S M S S - - - M - - M L - - - D3 L S S - - - M L - - - D3 L L - S - - L L L - - - D3 L L S - - L L L L - - D4 S M S S - - L <thl< th=""> L L L<td>CO1</td><td>S</td><td>М</td><td>L</td><td>-</td><td>S</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td></td><td></td><td>\uparrow</td><td>-</td><td>-</td></thl<>	CO1	S	М	L	-	S	-	-	-	-	-	-			\uparrow	-	-
O3 L S L - S - - - L - L L - - - - L L L - - - L L L - - - L L L - - - L L L - - - L L L - - - L L L - - - L L L - - - L L L - - - L L L L - - - L L L L - - - D D L L L L - - - D D L L L L - - D D D L L L L L L L L L L L L L L L L L <thl< th=""> <thl< th=""> <thl< th=""></thl<></thl<></thl<>	CO2	S	М		S	-	-	-	-	М	-	-			+	-	-
D4 S M S L L S S - - S - L L - - D5 L M S M - S M M - S - L L - - D5 L M S M - S - L L - - D6 S L S L M S S - - M - L L - -	CO3				-	S	-	-	-		L	-			+	-	-
D5 L M S M - S M M - S - L L - - - - D6 S L S L M S S - - L L L - - - D6 S L S L M S S - - M - L L L - - - M - L L - - - M - L L S - - M - L L - - - - M - L L - - - - M S S S - - M - L L - - - - M S S S S - - M S S S <td>CO4</td> <td></td> <td></td> <td></td> <td>L</td> <td></td> <td>S</td> <td>S</td> <td>-</td> <td>-</td> <td></td> <td>-</td> <td></td> <td></td> <td>+</td> <td>-</td> <td>-</td>	CO4				L		S	S	-	-		-			+	-	-
O6 S L M S S - - M - L L - -	CO5								Μ	-		-			+	-	-
	CO6					М			-	-		-			+	-	-
-						-			1				_				1
YLLABUS		e		,													

HISTORY OF ELECTRICITY, QUANTITIES AND CIRCUITS

Evolution of Electricity and Electrical inventions, Electrical quantities- Charge, Electric potential, voltage, current- DC & AC, power, energy, time period, frequency, phase, flux, flux density, RMS, Average, Peak, phasor& vector diagram. Electric Circuits - Passive components (RLC), Ohm's law, KCL, KVL, Faraday's law, Lenz's law. Electrical materials – Conducting and insulating materials.

MEASURING INSTRUMENT AND ENERGY CALCULATION

Measuring Instruments - Analog and Digital meters - Types and usage. AC and DC Machines & Equipment-

Types, Specifications and applications.

Loads – Types of Loads- Power rating and Energy calculation – for a domesticloads. Energy Efficient equipments – star ratings.

ELECTRICALSAFETY AND INTRODUCTIONTOPOWERSYSTEM

Protection & Safety - Hazards of electricity - shock, burns, arc-blast, Thermal Radiation, explosions, fires, effects of electricity on the human body. Electrical safety practices, Protection devices. Electric Power- Generation resources, Transmission types & Distribution system (levels of voltage, power ratings and statistics)-Simple layout of generation, transmission and distribution of power.

TEXT BOOKS:

- 1. Metha.V.K,RohitMetha,"BasicElectricalEngineering",Fifthedition,Chand.S&Co,2012
- 2. Kothari.D.PandNagrath.I.J, "BasicElectricalEngineering", Secondedition, TataMcGraw-Hill, 2009
- **3.** R.K.Rajput , "Basic Electrical and Electronics engineering", Second Edition, Laxmi Publication, 2012 **REFERENCE BOOKS:**

1. SmarajtGhosh,"*FundamentalsofElectrical&ElectronicsEngineering*",Secondedition,PHILearning,200 7

COU	RSE DESIGNERS			
S.No	Name of the Faculty	Designation	Department / Name of the	Mail ID
		-	College	
1	Dr. R. Devarajan	Professor	EEE / VMKVEC	devarajan@vmkvec.edu.in
2	Mr. R. Sathish	Assistant	EEE / VMKVEC	sathish@vmkvec.edu.in
		Professor		

17E	EES03			ASICS LECTR IC ELE	ONICS	S ENGI	NEER	ING		Categor FC(ES)	•			Crea 4	lit
PREA	MBL									10(20)	-	Ū	v	-	
			impart	fundam	ental ki	nowled	ge on e	lectroni	cs com	ponents,	digital	logics a	nd com	municat	ion
engine	ering	concept	ts. The o	course b	begins v	with cla	ssificat	ion of v	arious	active an	d passiv	ve comp	onents,	diodes a	and
transis	stors. I	t enable	es the st	tudent t	o desig	n small	digital	logics	like mu	ıltiplexei	, demul				
circuit	s, etc.	It crafts	s the stu	dents to	o get ex	pertise	in mod	ern con	nmunic	ation sys	tems.				
PREF	QUIS	ITE-N	IL												
COUI	RSE O	BJEC	TIVES												
1				v varioi	is activ	e and p	assive of	compon	ents an	d their w	orking 1	principle	es.		
2			nd the n			-		Joinpon	ento un	a then w	oning j	principi			
3						5		lders n	ultiple	xer, etc.,					
4			-						_	ication s	vstems				
-				ppneau					Jiiiiiaii	ieution 5	ystems.				
			ompleti	on of th	e cours	e stude	ents will	be abl	e to						
			_							nciple of	diodes	Und	erstand		
	ansisto		leenom	e comp	onento	and ma	ie out t		ing pri	neipie oi	uloues	end	erstund		
			orking	principl	e of rec	tifiers,	regulat	ors and	transis	tors.		Ana	lyze		
			er syste									App			
			•					-		ler, Deco	der		lyze		
circuit			0	,	1	,		1	,	,			5		
CO5.	Famili	arize w	ith appl	ication	oriente	d conce	pts in t	he com	nunica	tion syste	ems.	Und	erstand		
MAP	PING	WITH	PROG	RAMN	IE OU	тсом	ES AN	D PRC	OGRAN	AME SP	ECIFI	COUT	COME	S	
															P
COS	PO	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1	PSO	PSO	S
005	1	102	105	104	105	100	10/	100	109	0	1	2	1	2	С
<u>ac :</u>													Ŧ		3
CO1	M	M	-	-	-	-	-	-	-	-	-	-	L		-
CO2	S	М	M	L	-	-	-	-	-	-	-	-	L		-
CO3	S	M	L	-	-	-	-	-	-	-	-	-	L		-
CO4	S	Μ	М	L	-	-	-	-	-	-	-	-	L		-
CO5	Μ	L	-	-	-	-	-	-	-	-	-	L	L		-

S- Strong; M-Medium; L-Low

SYLLABUS

SEMICONDUCTOR DEVICES

Passive and Active Components - Resistors, Inductors, Capacitors, Characteristics of PN Junction Diode - Zener Diode and its Characteristics - Half wave and Full wave Rectifiers - Voltage Regulation. Bipolar Junction Transistor, JFET, MOSFET & UJT.

DIGITAL FUNDAMENTALS

Number Systems – Binary, Octal, Decimal and Hexa-Decimal – Conversion from one to another – Logic Gates – AND, OR, NOT, XOR, Universal Gates – Adders, Multiplexer, De Multiplexer, Encoder, Decoder – Memories

COMMUNICATION AND ADVANCED GADGETS

Modulation and Demodulation – AM, FM, PM – RADAR – Satellite Communication – Mobile Communication, LED, HD, UHD, OLED, HDR & Beyond, Smart Phones – Block diagrams Only.

TEXT BOOKS:

1. R.K. Rajput, "Basic Electrical and Electronics Engineering", Laxmi Publications, Second Edition, 2012.

- 2. "Basic Electrical and Electronics Engineering", Department of EEE & ECE, Faculty of Engineering & Technology, VMRFDU, Anuradha Agencies, 2017.
- 3. Edward Hughes, "Electrical and Electronics Technology", Pearson Education Limited, Ninth Edition, 2005.

REFERENCES:

- 1. John G.Proakis and DimitrisG.Manolakis, "Digital Signal Processing Principles, Algorithms and Applications", Prentice-Hall of India, Fourth Edition, 2006.
- 2. VinayK.Ingle and John G.Proakis, "Digital Signal Processing using MATLAB" CL Engineering, Third Edition, 2011
- 3. Sophocles J.Orfanidis "Introduction to Signal Processing", Prentice Hall, 1996.
- 4. John G.Proakis and MasoudSalehi, "Communication Systems Engineering" Prentice Hall, Second Edition, 2002.

COURSE DESIGNERS

S.No	Name of the Faculty	Designation	Department / Name of the College	Mail ID
1	Dr.T.Sheela	Associate Professor	ECE / VMKVEC	sheela@vmkvec.edu.in
2	Mrs.A.Malarvizhi	Assistant Professor	ECE / VMKVEC	malarvizhi@vmkvec.edu.in
3	Mr.N.ManikandaDeva	Assistant Professor	ECE / VMKVEC	manikandadevarajan@vmkvec.ed
	rajan			u.in

17EEF	ES82	EN	NGINE	ERIN	G SK LAI		PRAC	TICE		Catego	ry	L 1	Г Р	Cre	dit
		A. B .	ASIC I	ELEC	FRICA LAI		NGINI	EERIN	G	FC(ES)	0 () 4	2	
PREAN It is a la and var	aborato	•				zes the	e basic	electri	ical wi	ring, me	asurem	ent of	electri	cal qua	ntities
PRERI Nil	EQUIS	ITE													
COUR	SE OB	JECT	IVES												
1	To lea	arn the	resider	ntial wi	iring a	nd var	ious ty	pes of	electri	cal wirin	g.				
2	To m	easure	the var	ious el	ectrica	al quar	ntities.								
3	To kn	low the	e necess	sity and	d types	s of ea	rthing	and me	asuren	nent of ea	arth res	sistance	e.		
COUR	SE OU	TCON	MES												
On the	success	sful con	mpletio	n of th	e cour	se, stu	dents	will be	able to)					
CO 1: I				A			-						Ap	ply	
CO 2: N													Ar	nalyze	
CO 3: N														ply	
MAPP	ING W	ITH H	PROG	RAMN	1E OU	JTCO	MES	AND F	PROG	RAMMI	E SPE	CIFIC	OUT	COMES	5
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3
CO1	S	М	L	-	S	-	-	-	-	-	-	L	L	-	-
CO2	S	М	S	S	-	-	-	-	М	-	-	Μ	L	-	-
CO3	L	S	L	-	S	-	-	-	-	L	-	L	L	-	-
S- Stror	ng; M-I	Mediur	n; L-Lo	ow				vnarim			•	•	•	•	·

List of Experiments

- 1. Residential house wiring using switches, fuse, indicator, lamp and energy meter.
- 2. Fluorescent lamp wiring.
- 3. Stair case wiring.
- 4. Measurement of electrical quantities voltage, current, power & power factor in RLC circuit.
- 5. Measurement of energy using single phase energy meter.
- 6. Measurement of resistance to earth of an electrical equipment.

REFERENCES

1. Laboratory Reference Manual

COURSE DESIGNERS

S.No.	Name of the Faculty	Designation	Department / Name	Mail ID
			of the College	
1	Dr. R. Devarajan	Professor	EEE / VMKVEC	devarajan@vmkvec.edu.in
2	Mr. R. Sathish	Assistant	EEE / VMKVEC	sathish@vmkvec.edu.in
		Professor		

1 7 66	EES82		EN	GINE PRAC		G SKI ES LAI			C	ategor	y	L	Т	I		Credit
1/EE	LE 582	P	ART I			LECT RING	RONI	ICS	ŀ	FC(ES)		2				
	MBLE		ovide a					asic E	lectror	nics En	pineer	ing. It	starts wit	h fam	iliar	ization
													ruct and t			
	onic pro														I.	
PRER	QUISI	TE –	NIL													
COU	RSE OF	BJEC	TIVE	S												
1	To far	niliari	ze the	electro	onic co	mpone	ents, ba	asic ele	ectroni	c equip	ments	and s	oldering t	echni	ques	
2	To stu	dy the	e chara	cterist	ics of l	Diodes	, BJT a	and FE	ET.							
3	To un	dersta	nd the	princi	ples of	variou	ıs digit	al logi	ic gate	s.						
4	To un	dersta	nd the	conce	pt of b	asic m	odulati	on tec	hnique	es.						
COUH	RSE OU															
On the	e succes	sful c	omple	tion of	the co	urse, s	tudents	s will ł	be able	to						
											ment	s and f	heir work	ing	Un	derstand
princip		und ti	10 0451	05 01 1	unous	ciccut		mpon	cinto un	a equip	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, und t	nen work	mg	UII	aerstana
		and th	ne fund	lament	als of	solderi	ng tech	nniaue	s for a	ctive a	nd pas	sive co	omponent	s	Un	derstand
	Know tl										F			~		derstand
	Verify t					,			T NA		OP	XOF	D)			derstand
	Disting											AUI	().			derstand
				-			<u> </u>					SPEC	IFIC OU	тсо		
COS	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO1	PS	02	PSO3
	1 M	2	3	4	5	6	7 M	8	9 L	10	11 M	12	L			
CO1		L	-	-	-	-		-		-		-	L			
CO2	М	L	-	-	-	-	М	-	L	-	Μ	-				
CO3	М	L	-	-	-	-	М	-	М	-	М	-	L			
CO4	М	L	-	-	-	-	М	-	М	-	М	-	L			
CO5	М	L	-	-	-	-	М	-	М	-	М	-	L			
S- Stro	ong; M-	Medi	um; L-	Low		1				l l		1		1		1
	OF EX															
1 1.1	t; fr.: `	Flact	onica	Come	nonto											
	tifying l															
	racteris															
	racteris															
	ut & Ou					т										
-	nsfer ch	-				1.										
	ification															
	dy of A		•		on.											
	dy of Fr															
	RSE DE															
S.No	Na	me of	the F	aculty		Des	ignatio	on	t/N	artmen ame of	•		Mai	l ID		
1	D _m T C	haala				l ac a ai a	to			College		ala@-	mlana	4		
1	Dr.T.S	neela			F	Associa	ue			CE /	sne	cia@v	/mkvec.ed	uu.in		

		Professor	VMKVEC	
2	Ms.A.Malarvizhi	Assistant Professor	ECE /	malarvizhi@vmkvec.edu.in
			VMKVEC	
3	Mr.N.ManikandaDevarajan	Assistant Professor	ECE /	manikandadevarajan@vmkvec.edu.i
			VMKVEC	n

171.0	FFCO	1	ENGINEERING GRAPHICS							ory	L]	Г	Р	Cr	edi
1/1/11	EES84	•			ory & Pi				FC(E	ES)	1	()	4		3
Pream		1														
							of engine									
							nic or pi									
							ict throu									
f surf		nis co	urse dea	us wiu	1 ortnog	rapnic	and pict	loriai p	rojecu	ons, se	cuona	i view	's and	deve	lopi	ne
	quisite	n NI	r													
	e Obj															
<u>1</u>	· · · · ·			ortho	manhic r	moiect	ions of p	oints	straigh	t lines	nlane	surfac	res and	l soli	ds	
2		-					ons of se		-		-					
3							t and cut			und ti	ue silu			uom		
4							etric and			of sim	ple so	lids.				
5							c views									
ours	e Out	comes	s: On th	ne succ	essful c	omple	tion of t	he cou	rse, st	udents	will b	e able	e to			
201.						of the	orthogra	phic pi	rojectio	ons of p	points,	straig	tht line	es,	App	ly
			aces and													
CO2.						ving of	f the orth	nograpi	nic pro	jection	s of se	ctione	ed soli	ds .	App	ly
203.		and true shape of the sections.ApplyDevelop lateral surfaces of the solid section and cut section of solids.Apply									1.7					
203. 204.												-				
204. 205.		Draw the pictorial projections (isometric and perspective) of simple solids. Apply Implement the free hand sketch of the orthographic views from the given pictorial Apply														
	view.										• • PP	19				
lapp			ogramn	ne Ou	tcomes a	and Pr	ogramn	ne Spe	cific O	outcom	ies					
	PO	PO		PO		PO		-	PO	PO1	PO	РО	PSO	P	PS	Р
CO	1	2	PO3	4	PO5	6	PO7	PO8	9	0	11	12	1	C	02	О
201	S	S	L	S	L	-	-	-	-	-	-	-	L		-	
CO2	S	S	L	S	L	-	-	-	-	-	-	-	L		-	
203	S	S	L	S	L	-	-	-	-	-	-	-	L		-	-
204	S S	M S	L L	S S	S L	-	-	-	-	-	-	-	L L		-	-
CO5					L	-	-	-	-	-	-	-	L		-	
<u>- Stro</u> yllab		vi-ivie	dium; I	-LOW												
•		RVE	SAND	FREE	HAND	SKET	CHING	Ţ								
										_						
				-			ojection	-			-	ng vis	sualiza	tion	skill	ls
-			SKetchir F POI	-	-	views i	from pict	torial v	iews o	r objec	ts.					
				,												
5			. 5		U		located		-			ned to	both p	lane	s –	
			-		d true in	clinati	ons – rot	tating l	ine me	thod of	nly.					
KOJ	ECH	ON U	OF SOL	IDS												
rojec	tion of	f simp	le solids	s like p	risms, p	yramic	ls, cylind	der and	l cone	when t	he axis	is inc	lined	to an	y on	ne
eferer	nce pla	ane by	change	of pos	ition me	thod.	-									
ЕСТ	ION	OF SC	DLIDS A	AND I	DEVEL	OPME	ENT OF	SURF	ACES	5						
ectio	ning o	fabov	ve solids	s in sin	ple vert	ical po	sition by	y cuttin	g plan	es incli	ned to	any c	ne ref	erenc	ce pl	lan
							shape of									
nd tru	incate	d solic	ls like P	risms,	pyramic	ls, cyli	nders an	d cone	s.	-						Î
							PROJE									
		fisom														

Perspec	ective projection											
Text B	ooks											
1	Natarajan K V, "Engine	ering Graphics", Tata N	IcGraw-Hill Publishin	ng Company Ltd. New Delhi.								
2	K.Venugopal and V.Prabhu Raja, "Engineering Graphics", New Age International Private Limited.											
3	K.R.Gopalakrishna"Eng	ineering Drawing" (Vo	l. I & II), Subhas Pub	lications, 2014.								
Refere	nce Books											
1	N.D. Bhat and V.M. Par	ichal, Engineering Grap	phics, Charotar Publis	hers 2013								
2	E. Finkelstein, "AutoCA	AD 2007 Bible", Wiley	Publishing Inc., 2007	,								
3	R.K. Dhawan, "A text b	ook of Engineering Dra	wing", S. Chand Publ	lishers, Delhi,2010.								
4	DhananjayA.Jolhe, "Eng Publishing Company Lin		an Introduction to A	utoCAD", Tata McGraw Hill								
5	G.S. Phull and H.S.Sand	lhu, "Engineering Grap	hics", Wiley Publicati	ions, 2014.								
Course	rse Designers											
S.No	Faculty Name Designation Department / Name of the Email id College											
1	Dr. S.VENKATESAN	Professor	Mech / VMKVEC	venkatesan@vmkvec.edu.in								
2	Prof. N.Rajan	Associate Professor	Mech / VMKVEC	rajan@vmkvec.edu.in								

LITHOGRAPHY FOR NANOSCALE DEVICES

Introduction to optical/UV electron beam and X-ray Lithography systems and processes, Wet etching, dry (Plasma /reactive ion) etching, Etch resists-dip pen lithography

CARBON NANO TUBE

Introduction to Carbon Nano Tube (CNT) - Types of carbon nano tube - Characteristics of carbon nano tube - synthesis of CNT- Properties of CNT- Application of CNT.

CHARECTERISATION TECHNIQUES

X-ray diffraction technique, Scanning Electron Microscopy – environmental techniques, Transmission Electron Microscopy including high-resolution imaging, Surface Analysis techniques- AFM, SPM, STM, SNOM, ESCA, SIMS Nano-indentation

TEXT BOOK:

- 1. Chatwal and Anand. Instrumental Methods of Analysis.
- 2. Skoog, D., 2000. Instrumental Methods of Analysis.

REFERENCES:

- 1. Campbell, I.D. and Dwek, R.A., 1986. Biological Spectroscopy, Benjamin Cummins and Company.
- 2. Atkins, P.W., 1990. Physical Chemistry, 4thEdition

3. Willard, H.H., Merrit, J.A., Dean, L.L. and Setlle, F.A., 1986. Instrumental Methods of Analysis. CBS Publishers and Distributors.Edn., Oxford.

4. Gordon G. Hammes., 2005. Spectroscopy for Biological Science. Wiley & Sons Publications.

COUR	COURSE DESIGNERS						
S.No.	Name of the Faculty	Mail ID					
1	Mr. SAKTHI GANAPATHY	sakthiganapathy@vmkvec.edu.in					
2	Dr. S. MOHAMMED HARSHUL KHAN	harshulkhan@vmkvec.edu.in					

CORE COURSES

17CVCC33	STRENGTH OF MATERIALS	Category	L	Т	Р	Credit
		CC	3	0	0	3

PREAMBLE

The aim of the course is to understand the concepts of stress and strain and their use in the analysis and design of structures

PREREQUISITE - ENGINEERING MECHANICS

COURSE OBJECTIVES

1	To understand basic mechanical forces acting on rigid and deformable bodies.
1	
2	To learn to draw shear force and bending moment diagram for various types of beams.
3	To learn the torsional effects on circular bars, shafts, helical spring.
4	To learn the deflection equations of beams and columns for different end conditions.
5	To learn the two dimensional stresses and deformation of cylinders and spherical shells.

COURSE OUTCOMES

			ONLA	,												
On	the succ	essf	ul comp	oletion	of the c	ourse, s	tudents	will be	e able to)						
CO1. Compute resultant, resolve several concurrent forces and also to apply Apply																
equilibrium concepts, Compute simple stresses and strains																
						noment	t compu	itations	and co	nstruct sl	near		Ap	ply		
	and bend			-												
CO3.	Torsion	al ef	fects of	n circul	ar bars,	shafts,	helical	spring.					Ap	ply		
	Evaluati												Ap	ply		
				and shea	ar stress	ses for v	various	section	s and pl	lot the va	riation		Ap	ply		
acros	s the cros	ss se	ection													
MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES																
CO	PO1	Р	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1	PO	12	PSO1	PS	PS
S		0									1				O2	03
		2														
CO	Μ	Μ	М	-	-	-	-	S	-	-	L	-		М	-	-
1.																
CO	S	S	S	-	-	-	-	-	-	-	S	-		L	L	-
2.	0	G	G								G					
CO	S	S	S	М	-	-	-	-	-	-	S	-		-	М	-
3. CO	S	S	S	S		М		S			S				L	L
CO 4.	3	3	3	3	-	IVI	-	3	-	-	3	-		-	L	L
4. CO	S	S	S	S		М	-	-		_	S	-		М		
5.	3	3	3	3	-	111	-	-	-	-	3	-		11/1	-	-
S- Strong; M-Medium; L-Low																
5 50	0115, 111	1,100	iiuiii, L	LOW												

SYLLABUS

STRESS- STRAIN AND DEFORMATION OF SOLIDS: Properties of material, Concept of Stress and Strain, Hook's Law, Stress Strain Diagram for structural steel and Non-ferrous materials. Poisson's Ratio & principles of superposition, Total elongation of tapering bars of circular and rectangular cross-sections. Elongation due to self-weight, volumetric strain. Expression for Volumetric strain, Elastic constants, relationship among elastic constants, compound bars Rigid and Deformable bodies – Strength- Stiffness and Stability – Stresses; Tensile-Compressive and Shear – Elastic constants – Strain energy and unit strain energy – Strain energy in uniaxial loads.

BEAMS - LOADS AND STRESSES : Types of beams: Supports and Loads – Shear force and Bending Moment

in beams – Cantilever- Simply supported and Overhanging beams – Stresses in beams – Theory of simple bending – Stress variation along the length and in the beam section – Shear stresses in beams.

TORSION: Analysis of torsion of circular bars – Shear stress distribution – Bars of Solid and hollow circular section – Stepped shaft – Twist and torsion stiffness – Compound shafts – Fixed and simply supported shafts – Application to close-coiled helical springs – Maximum shear stress in spring section including Wahl Factor – Deflection of helical coil springs under axial loads – Design of helical coil springs.

DEFLECTION OF BEAMS : Elastic curve of Neutral axis of the beam under normal loads – Evaluation of beam deflection and slope: Double integration method- Macaulay Method- and Moment-area Method –Columns – End conditions – Equivalent length of a column – Euler equation – Slenderness ratio – Rankine formula for columns – Introduction to curved beams.

ANALYSIS OF STRESSES IN TWO DIMENSIONS: Biaxial state of stresses – Thin cylindrical and spherical shells – Deformation in thin cylindrical and spherical shells – Biaxial stresses at a point – Stresses on inclined plane – Principal planes and stresses – Mohr's circle for biaxial stresses – Maximum shear stress - Strain energy in bending and torsion.

TEXT BOOKS:

- 1. Ramamrutham.S- Strength of Materials- S.Chand&B Co. New Delhi-2007.
- 2. Beer F. P. and Johnston R- "Mechanics of Materials"- McGraw-Hill Book Co- Third Edition- 2008.
- 3. Srinath L.N., " Advanced Mechanics of Solids ", Tata McGraw Hill Publishing Company Ltd., New Delhi,2009
- 4. Dr.R.K.Bansal,"A Textbook of Strength of Materials"Laxmi Publications, 2010

REFERENCE BOOKS:

- 1. Nash W.A- "Theory and problems in Strength of Materials"- Schaum Outline Series-, McGraw-Hill Book Co- New York- 2005
- 2. Ryder G.H- "Strength of Materials"- Macmillan India Ltd.- Third Edition- 2007
- 3. Ray Hulse- Keith Sherwin & Jack Cain- "Solid Mechanics"- Palgrave ANE Books- 2006.
- 4. Singh D.K "Mechanics of Solids" Pearson Education 2009.

COUR	RSE DESIGNERS			
S.No.	Name of the Faculty	Designation	Department	Mail ID
1	A.FizoorRahman	Assistant Professor	CIVIL	fizoorr@gmail.com
2	M.Senthilkumar	Assistant Professor	CIVIL	Senthilkumar@vmkvec.edu.in
3	A.Senthilkumar	Assistant Professor	MECHANICAL	senthilkumar@avit.ac.in

1703	VCC3	4	FLU	ID M	ECHA	ANICS	S ANE)	Cate	gory	L	Т	Р	С	redit
1/0	1005	•		MA	CHIN	IERY			С	С	3	0	0		3
Prean The ai		he sub	oject is	s to pro	ovide a	a fund	amenta	al knov	wledg	e in flu	id mech	nanics a	nd macl	ninery.	
Prere	quisit	e : NI	L												
Cours	se Obj	jective	e												
1	To lea	arn the	funda	amenta	ıls in F	Fluid N	Aechar	nics							
2	To un	To understand the kinematics of the fluid flow.													
3	To un	dersta	nd the	fluid	flow c	oncep	ts								
4	To lea	arn the	work	ing pri	inciple	, appl	ication	ıs & de	esign o	of vario	us hydi	aulic tu	rbines.		
5	To lea	arn the	work	ing pri	inciple	, appli	ication	ıs &, d	esign	of vario	ous hyd	raulic p	umps.		
Cours	se Out	tcome	s: On	the su	ccessf	ul cor	npleti	on of 1	the co	urse, st	tudents	s will be	able to)	
CO1.													Ap	ply	
		hydrostatic forces and point of application on a plane or curved surface.													
CO2.	Distinguish between various types of flows and derive the continuity equation for compressible and incompressible flowApply														
CO3.							s of the blems.		oulli's	equati	on and	apply it	Ap	ply	
CO4.		cribe oulent	the con	nditior	n unde	r whic	h the f	low ir	n a circ	cular pi	pe is la	minar o	r Ap	ply	
CO5.				•			es in p and in	-		l calcul	ate the	flow	Ap	ply	
Mapp	oing w	ith Pr	ogran	nme C	Outcon	nes an	nd Pro	gram	me Sp	ecific (Outcom	nes			
СО	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1	PSO	PSO	PSO
CO1	1 S	2 M	3 M	4 L	5 M	6 L	7	8	9	0	1	2 L	1 L	2	3
CO2	S	M	M	L	L	L	_	_	_	_	_	M	L	_	_
CO3	S	M	M	L	L	L	_	-	_	-	_	L	L	_	
										_					
CO4	S	S	S	M	L	L	-	L	-	-	L	М	L	-	-
CO5	Μ	М	М	L	L	Μ	-	-	-	-	L	М	L	-	-
S- Str	ong;]	M-Me	dium;	; L-Lo	W					ı					1

BASIC CONCEPTS AND PROPERTIES

Fluid – Definition - solid and fluid - Units and dimensions - Properties of fluids – Temperature - Viscosity - Compressibility - Vapour pressure - Capillary and surface tension - Fluid statics: concept of fluid static pressure - Pressure measurements by manometers and pressure gauges. Introduction to CFD, geophysical fluid dynamics. Velocity and density measurement methods.

FLUID KINEMATICS AND SIMILARITIES

Fluid Kinematics - Flow visualization - Lines of flow - Types of flow - Velocity field and acceleration - Continuity equation (one and three dimensional differential forms)- Equation of streamline - Stream function - Velocity potential function - Circulation - Flow net – Fluid dynamics - Equations of motion - Euler's equation along a streamline - Bernoulli's equation – Applications - Venturi meter - Orifice meter - Pitot tube - Dimensional analysis - Buckingham's π theorem- Applications - Similarity laws and models.

INCOMPRESSIBLE FLUID FLOW

Viscous flow - Navier-Stoke's equation - Shear stress - Pressure gradient relationship - Laminar flow between parallel plates - Laminar flow through circular tubes (Hagen poiseulle's) - Hydraulic and energy gradient - Flow through pipes - Darcy - Weisbagh's equation - Pipe roughness -Friction factor-Moody's diagram - Minor losses - Flow through pipes in series and in parallel - Power transmission - Boundary layer flows - Boundary layer thickness - Boundary layer separation - Drag and lift coefficients. Major losses-design aspect in application of drags and lift coefficients. Piping Engineering-Introduction and Applications.

HYDRAULIC TURBINES

Fluid machines: definition and classification - Exchange of energy - Euler's equation for turbo machines - Construction of velocity vector diagrams - Head and specific work - Components of energy transfer -Degree of reaction. Hydro turbines: definition and classifications - Pelton turbine - Francis turbine propeller turbine - Kaplan turbine - Working principles - Velocity triangles - Work done - Specific speed - Efficiencies - Performance curve for turbines. Energy saving design requirements for turbine.

HYDRAULIC PUMPS

Pumps: definition and classifications - Centrifugal pump: classifications - Working principle- velocity triangles - Specific speed - Efficiency and performance curves - Reciprocating pump: classification - Working principle - Indicator diagram -Work saved by air vessels and performance curves - Cavitations in pumps - Rotary pumps- Applications.

Text Books

	Bansal- R.K "Fluid Mechanics and Hydraulics Machines"- (5 th edition) - Laxmi publications (P) Ltd- New Delhi- 2005.
2	Modi.P.N. & Seth.S.M., a Textbook on Fluid Mechanics, Standard Publishers Ltd.

Reference Books

1	White- F.M "Fluid Mechanics"- Tata McGraw-Hill- 5 th Edition- New Delhi- 2003.
2	Ramamurtham. S- "Fluid Mechanics and Hydraulics & Fluid Machines"-Dhanpat Rai & Sons, Delhi- 2003.

Course Designers

S.No	Faculty Name	Designation	Department/ Name of the College	Email id
1	A.Fizoor Rahman	Assistant Professor	Civil / VMKVEC	fizoorrahman@vmkvec.edu.in
2	M.Senthilkumar	Assistant Professor	Civil / VMKVEC	senthilkumar@vmkvec.edu.in

17CVCC93	HYDRAULICS AND STRENGTH OF	Category	L	Т	Р	Credit
11010035	MATERIALS LAB	CC	0	0	4	2

PREAMBLE

The aim of the subject is to provide make the students to understand the basic mechanism in hydraulics and strength of materials.

PREREQUISITE

NIL

COURSE OBJECTIVES

1 To understand the concepts of fluid mechanics and performances of various pumps

2 To get hands on experience to conduct testing of materials.

3 To perform operations in hydraulic machineries and test various materials.

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1. Measure the flow in pipe section using orificemeter and venturimeter and discharge in channels using notches	Apply
Co2. Determine the major and minor losses in pipes	Apply
Co3. Study the performance of different types of hydraulic turbines and pumps	Apply
Co4. Determine the behavior of structural elements, such as bars, beams and springs subjected to tension, compression, shear, bending, and torsion by means of experiments	Apply

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO	PO	PO12	PSO	PS	PSO3
										10	11		1	O2	
CO1	S	Μ	М	L	-	-	-	Μ	-	-	-	М			
CO2	S	Μ	М	L	-	-	-	Μ	-	-	-	М			
CO3	S	М	М	М	L	-	-	-	-	-	-	М			
CO4	Μ	Μ	М	Μ		L		Μ	L	Μ	Μ	L			

S- Strong; M-Medium; L-Low

LIST OF EXPERIMENTS

CYCLE -I

- 1. A comparative analysis of Coefficient of discharge using Orifice meter &venturimeter.
- 2. Determination of pipe loses(major & minor).
- 3. Conducting experiments and draw the characteristic curves of centrifugal pump/submersible pump/jet pump/reciprocating pump/Gear pump (any 3 pump experiments must be done).

- 4. Study about the performance characteristics of Pelton wheel and Francis turbine.
- 5. Determination of Tensile strength and Compression strength on a given specimen.

CYCLE -II

- 6. Determination of shear strength of Mild steel and Aluminium rods
- 7. Determination of Torsional strength of mild steel rod
- 8. Determination of Impact strength
- 9. Conduct of Hardness test on metals Brinell and Rockwell Hardness.
- 10. Conduct of Deflection test on beams

TEXT BOOKS:

'HYDRAULICS AND STRENGTH OF MATERIALS LAB MANUAL', Department of Civil engineering, VMKV engineering College, Vinayaka Mission's Research Foundation (Deemed to be University), Salem.

REFERENCES:

- 1. Modi P.N and Seth S.M, "Hydraulics and Fluid Mechanics Including Hydraulic Machines" Standard Book House" New Delhi, 20thEdition 2015.
- 2. Bansal R.K, "Fluid Mechanics and Hydraulic Machines" Laxmi Publications, New Delhi, 2015.
- 3. Rajput. R.K, "A Text book of Fluid Mechanics and Hydraulic Machines", S.Chand and Company, New Delhi, 2011.

COURSE DESIGNERS													
S.N	Name of the Faculty	Designatio	Name of the College	Mail ID									
0	rame of the rubbity	n	Traine of the Conege										
1	Sathiyaraj R	AsstProf	VMKVEC	sathiyaraj@vmkvec.edu.in									
2	A.FizoorRahman	AsstProf	VMKVEC	fizoorr@gmail.com									

17ME	CC01				IUFA	CTU	RING		Ca	tegory	L	Т		Р	C	redit
	CCUI	PROCESS						CC	3	0)	0		3		
	course	-								facturin ic Engiı	0		ith	a fo	ocus c	asting,
Prereg	uisite	– NIL	4													
Course	e Obje	ctive														
1	To apply molding and casting process.															
2 7	To discuss the various metal joining work to the student.															
3 7	Го етр	loy th	ne diffe	erent r	nechai	nical v	vorking	g of m	etals l	ike rolli	ng, forg	ing etc.				
	-	•	11	•			formin	e								
			•		U					arious fie						
Course	e Outc	omes	: On t	he suc	cessfu	ıl com	pletio	n of tl	ne cou	rse, stu	dents w	ill be a	ble	to		
CO1.	·			-						nd cost t llowance		als on th	ne	Ap	ply	
CO2.	applie	cation	s. Issu	les pre	sent ir	these	proces	ss and	their:	al joining remedie	s.			Ap	oply	
CO3.	proce	sses.	Refini		grin si	ze and				ıls. Hot a s. Variat			ng	Un	Iderstar	nd
CO4.							ferent s other			the sheet.	et metal	s and it	is	Un	Iderstar	nd
CO5.				onvent of the p			als to r	eplace	e plasti	ics and a	lso to re	educe th	ne	Ap	ply	
Mappi	ng wit	h Pro	gram	me O	utcom	es and	l Prog	ramn	ne Spe	cific Ou	tcomes					
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PS	801	PSO2	PSO3
CO1	S	S	-	-	-	-	-	-	-	-	-	-]	Ĺ	-	-
CO2	S	S S I							L	-	-					
CO3	S	М	М	L	-	-	-	-	-	L	-	-]	Ĺ	-	-
CO4	S	М	М	L	-	-	-	-	-	L	-	-]	Ĺ	-	-
CO5	S	М	М	L	L	-	-	-	-	L	-	-	1	Ĺ	-	-
S- Stro	ng; M-l	Mediu	ım; L-]	Low			• I						•			

Syllabus

Introduction to Casting Processes

Introduction: Concept of manufacturing process, Classification and its importance of manufacturing processes, Casting processes: steps involved, advantages and limitations - allowances and their importance, core making process - Moulding sand: constituents, types, properties, Cupola furnace and Electric Arc furnace - Sand casting processes: mould making, pouring, casting. Special casting processes - Shell and investment casting - Centrifugal casting - Casting defects and remedies.

Metal Joining Processes

Introduction to various Welding processes – Classification of welding processes –Gas welding, Arc welding, TIG, MIG, Submerged arc welding–Resistance welding – Friction welding - seam welding – Percussion welding – Introduction to friction stir welding, Brazing and soldering processes - Weld defects and control measures. Introduction to inspection methods

Mechanical Working of Metals

Hot and Cold working of materials - Forging: hot and cold forging, open and close forging, types forging machines, types of forging operations. Extrusion: hot and cold extrusion, forward and backward extrusion, types operations. Rolling: hot and cold rolling, types and operations, wire drawing and tube piercing. Drawing: Hot and cold drawing – sheet metal drawing, deep drawing, bar drawing, tube drawing, tube piercing, wire drawing, plastic drawing

Sheet Metal Forming Processes

Sheet metal processes: characteristics, Typical shearing, bending, curling, embossing, coining and drawing operations – Stretch forming operations: Formability of sheet metal – Working principle and applications–various special forming processes.

Plastic Engineering

Plastics: Etymology -classification and properties- applications and environmental effects- Manufacturing processes of plastics -High performance plastics- plastic joining methods.

Text Books

1	Elements of Workshop Technology- Vol. I -SK Hajra Choudhury - Indian book distributing company, Calcutta- 1986.
2	"Manufacturing Engineering and Technology", Serope Kalpakjian-Steven R.Schmid - Pearson Education- Inc. 2002 (Second Indian Reprint).
3	"Manufacturing Technology", Vol-1- P.N.Rao - Tata McGraw-Hill Publishing Limited- IInd Edition- 2002
4	Prabhu.T.J, Jai Ganesh. V and Jebaraj.S, "Basic Mechanical Engineering", Scitech Publications, Chennai, 2000.
Refere	nce Books
1	"Elements of Manufacturing Processes", B.S. Nagendra Parashar & R.K. Mittal- Prentice Hall of India learning pvt. ltd- 2012.
2	"A text book of production technology", P.C. Sharma- S. Chand and Company, 2006.
3	"Manufacturing science", Amithaba Gosh & Asok kumar Malik, Ellis horwood, 1986.
4	Hajra Choudhury. S.K, Hajra Choudhury. A.K, Nirjhar Roy, "Elements of Workshop Technology", Vol. 1, Media Promoters, 2009.
5	Kalpakjian, S. and Schmid, S.R., 2014. Manufacturing engineering and technology (p. 913). Upper Saddle River, NJ, USA: Pearson.
6	Hitomi, K., 2017. Manufacturing Systems Engineering: A Unified Approach to Manufacturing Technology, Production Management and Industrial Economics. Routledge.

Cours	Course Designers											
S.No	Faculty Name	Designation	Department / Name of the College	Email id								
1	S. Natarajan	Associate Professor	Mech / VMKVEC	natarajanshree@gmail.com								
2	C. Thangavel	Associate Professor	Mech / VMKVEC	ceeteemech@gmail.com								

17MECC02	ENGINEERING THERMODYNAMICS	Category	L	Т	Р	Credit
		CC	2	1	0	3

Thermodynamics is a branch of science that deals with energy and its transfer. All activities in nature involve some interaction between energy and matter. Engineering thermodynamics plays a major part in the design and analysis of automotive engines, rockets, jet engines, refrigeration and air-conditioning systems, and power plants, etc. Therefore, developing a good understanding of the basic principles of engineering thermodynamics is essential for mechanical engineers. This course deals with the basic principles and concepts of thermodynamics, laws of thermodynamics, energy and entropy of ideal gas, steam, and mixture of gases.

Prerequisite

NIL

Course Objectives

1	To discuss the basic concepts and laws of thermodynamics
2	To apply the concept of enthalpy and entropy in thermal systems
3	To discuss the working principle of steam cycles and pure substances.
4	To calculate the properties of gas and vapour mixtures
5	To perform combustion analysis and exhaust gas analyzer

Course Outcomes

On the successful completion of the course, students will be able to

CO 1.	Discuss the basic concepts and laws of thermodynamics	Understand
CO 2.	Apply concept of enthalpy and entropy in thermal systems	Apply
CO 3.	Discuss the working principle of steam cycles and pure substances.	Understand
CO 4.	Calculate properties of gas and vapour mixtures	Apply
CO 5.	Perform combustion analysis and in exhaust gas analyzer	Apply

Mapping with Programme Outcomes and Programme Specific Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
1.	М	L											L		
2.	S	М	L										L		
3.	S	М	L										L		
4.	S	S	М	L						М			L		
5.	S	S	S	М						М			L		

S- Strong; M-Medium; L-Low

Syllabus

BASIC CONCEPTS AND FIRST LAW OF THERMODYNAMICS

Definition of Thermodynamics, macroscopic and microscopic approach, thermodynamic systems and surroundings, thermodynamic properties, thermodynamic equilibrium, state, path, process and cycle, reversible and irreversible processes, work, energy, and heat, state postulate and Zeroth- law of thermodynamics, thermometer and thermometric property, temperature Scales.Internal energy, First law of thermodynamics, perpetual motion machine of the first kind PMM I, application of first law to non-flow processes or closed system and related problems, application of first law to steady flow energy equation. Problems

SECOND LAW OF THERMODYNAMICS

Limitations of First law of thermodynamics, thermal reservoir, heat engine, refrigerator, and heat pump, statements of Second law of thermodynamics, perpetual motion machine of II Kind - PMM II, Carnot cycle, , Carnot theorem, corollary of Carnot's theroem, Clausius inequality. Problems on heat engine, refrigerator and heat pump. Entropy, Temperature – entropy diagram, entropy changes for a closed system. Problems on entropy change calculations in different processes. Availability and irreversibility , available and unavailable energy, availability in non-flow and steady flow systems. Problems on irreversibility and availability.

PURE SUBSTANCES AND THERMODYNAMIC RELATIONS

Definition of pure substance, phase change of a pure substance, p-T diagram, p-V-T Surface, phase change terminology, property diagram in common use. Formation of steam, sensible heat, latent heat, dryness fraction, enthalpy, superheated steam, thermodynamic properties of steam and steam table, work, internal energy, entropy calculation, Mollier diagram, calorimeters for determination of dryness fraction. Problems determining thermodynamic properties of steam.

Thermodynamic relations : Thermodynamic potentials, thermodynamic gradients, general thermodynamics relations, entropy (Tds) equations, equations for internal energy and enthalpy, equation of state, coefficient of expansion and compressibility, specific heats, Joule Thomson coefficient, Clausius –Claperyon equation, Maxwell's relations.

GASES AND VAPOUR MIXTURES

Ideal gas, equation of state for a perfect gas, Joules law, internal energy, enthalpy & specific heat capacities of an ideal gas, real gases, Van der waals equation – Amagats experiment, the cooling effect. Law of corresponding states, reduced properties, compressibility chart. Problem on calculation of properties ideal and real gases. Daltons law, Gibbs – Daltons law, volumetric analysis of a gas mixture, apparent molecular weight and gas constant, specific heats of a gas mixture, adiabatic mixing of perfect gases. Problems on gas mixture property values.

FUELS AND COMBUSTION

Characteristics of an ideal fuel, properties of fuel, flash point, fire point, cloud point, pour point, viscosity, combustion reaction and combustion analysis, theoretical air and excess air, stoichiometric air fuel ratio, analysis of combustion products, internal energy and enthalpy of formation, calorific value, determination of calorific value of fuels, Junkers gas calorimeter, Orsat apparatus, exhaust gas analyser, problem on calculation of air fuel ratio.

TEXT BOOK:

- 1. Yunus. A.Cengel et al, Thermodynamics: An Engineering Approach, McGH, 8th Edn, 2015.
- 2. P.K.Nag, Engineering Thermodynamics, Mc Graw Hill, 5th edition, 2013.

REFERENCES:

1. R.K.Rajput, A text book of Engineering Thermodynamics , Laxmi Publications, 5th Edn, 2016.

2. D.S.Kumar, Engineering Thermodynamics : Principles and Practices, Laxmi Publications, Katsun Books 2012.

	Name of the Faculty	Designation	Department/College	Mail ID
1	P.SELLAMUTHU	Associate Professor	Mech / VMKVEC	sellamuthu@vmkvec.edu.in
2	R.ANANDAN	Associate Professor	Mech / VMKVEC	anandan@vmkvec.edu.in
3				
4				

17M	ECC03		Е	NGI	NEER	RING		Ca	tegor	y	L	Т	Р	Cre	edit
1/14	LCC03			MEC	HAN	ICS			CC		2	1	0		3
and dy	ourse pi namic o			basic	know	ledge	abou	t the b	ehavi	or of t	he bod	ies whic	h are u	nder sta	atic
NIL	quisite														
Cours	e Obje	ctive													
1	Fo expla	ain the	e basi	c laws	s of m	echan	ics ar	nd fore	ces						
2	limensi	on										under	_		
	Го emp nertia u								aces a	nd to	find th	e Centr	oid and	d mom	ent of
4		tice p	robler	ns in	the ar	eas of	f Fric	tion a	-	gid bo	dy dyn	amics b	y unde	rstandi	ng the
										f dynai	mics of	fparticle	es.		
Cours	e Outco	omes	: On t	he su	ccessf	ful co	mplet	tion o	f the c	course	, stude	ents will	be abl	le to	
CO1.	Ident: equili	•	-	neerir	ng pro	blems	usir.	ng the	conce	pt of s	tatic		Under	rstand	
CO2.		-		-	id boo dition		nder e	equilit	orium	in two	dimer	ision	Apply	Į	
CO3.		dy an									nter of momei		Apply	/	
CO4.		-			e		-	enome					Apply	/	
CO5.								using result		oncep	t of dy	namic	Analy	/ze	
Mapp	ing wit	h Pro	gram	me O	utcor	nes ai	nd Pr	ograr	nme S	Specifi	ic Out	comes	I		
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	М	L	L	L		L							L		
CO2	S	L	L	М		L							L		
CO3	S	М	М	М		L							М		
CO4	S	М	М	М		L							М		
CO5	S	S	S	S		L							S		
S- Stro	ng; M-M	edium	ı; L-Lo)w											

SYLLABUS

BASICS & STATICS OF PARTICLES

Introduction - Units and Dimensions - Laws of Mechanics - Lame's theorem. Parallelogram and triangular law of forces - Coplanar Forces - Resolution and Composition of forces - Equilibrium of a particle - Forces in space - Equilibrium of a particle in space - Equivalent systems of forces - Principle of transmissibility - Single equivalent force.

EQUILIBRIUM OF RIGID BODIES

Free body diagram - Types of supports and their reactions - requirements of stable equilibrium -Moments and Couples - Moment of a force about a point and about an axis - Vectorial representation of moments and couples - Scalar components of a moment - Varignon's theorem -Equilibrium of Rigid bodies in two dimension.

PROPERTIES OF SURFACES AND SOLIDS

Determination of Areas and Volumes - First moment of area the Centroid of sections - Rectangle, circle, triangle from integration - T section, I section, Angle section, Hollow section by using standard formula - second and product moments of plane area - Rectangle, triangle, circle from integration - T section, I section, Angle section, Hollow section by using standard formula - Parallel axis theorem and perpendicular axis theorem - Polar moment of inertia - Principle moments of inertia of plane areas - Mass moment of inertia.

FRICTION AND ELEMENTS OF RIGID BODY DYNAMICS

Frictional force - Laws of Coloumb friction - simple contact friction - Rolling resistance - Belt friction. Translation and Rotation of Rigid Bodies - Velocity and acceleration - General Plane motion.

DYNAMICS OF PARTICLES

Displacement, Velocity and acceleration, their relationship - Relative motion - Curvilinear motion - Newton's law - Work Energy equation of particles - Impulse and Momentum - Impact of elastic bodies.

Text	Books
1	Beer & Johnson, Vector Mechanics for Engineers. Vol. I Statics and Vol. II Dynamics, McGraw Hill International Edition, 1995.
2	Kottiswaran N, Engineering Mechanics-Statics & Dynamics, Sri Balaji Publications, 2014.
3	Meriam, Engineering Mechanics, Vol. I Statics & Vol. II Dynamics 2/e, Wiley Intl., 1998.
Refe	rence Books
1	Rajasekaran.S, and Sankara Subramanian G, "Engineering Mechanics", Vikas Publishing Co. New Delhi.
2	Irving H. Sharma, Engineering Mechanics - Statics & Dynamics, III Edition, Prentice Hall of India Pvt. Ltd., 1993.
3	K.L.Kumar, Engineering Mechanics III Edition, Tata McGraw Hill Publishing Co. Ltd., 1998

Course	Course Designers											
S.No	Faculty Name	Designation	Department/Name of the College	Email id								
1	J.Sathees Babu	Associate Professor	Mech / VMKVEC	satheesbabu@vmkvec.edu.in								
2	J.Rabi	Associate Professor	Mech / VMKVEC	rabi@vmkvec.edu.in								

17MECC04	MANUFACTURING	Category					
I /WIECC04	TECHNOLOGY	CC	3	0	0	3	

This course aims to provide knowledge on the working, advantages, limitations and applications of various machining processes. Machine tools are power driven machine for making products of a given shape, size and accuracy by removing metal from the metal block.

Prerequisite : NIL

Course Objective

000						
1	To apply fundamentals of metal cutting processes and cutting tools.					
2	To discuss the types, construction and different operations of lathes.					
3	To apply the knowledge of different operations on special machines and va holding devices	rious types of work				
4	4 To employ the types, specification and operations of sawing, broaching and gear cutting machines.					
5	To explain classification, working and process parameter of grinding machin	es				
Course Outcomes: On the successful completion of the course, students will be able to						
CO1	Calculate the cutting forces and cutting tool life.	Apply				

CO2.	Understand the working principle and various operations of lathes.	Understand
CO3.	Design work holding & tool holding devices for special machining operations.	Apply
CO4.	Effectively select sawing, broaching and gear cutting for different types of operations to get better surface finish	Apply
CO5.	Gain application oriented knowledge related to grinding machines and super finishing process	Understand

Mapping with Programme Outcomes and Programme Specific Outcomes

	0		0				c	,	1						
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	L	L	L	-				L				L		
CO2	S	L	L		-				L				L		
CO3	S	L	L		-				L				L		
CO4	S	L	L		-				L				L		
CO5	S	L	L	L	-				L				L		
S- Stron	S- Strong; M-Medium; L-Low														

SYLLABUS

Fundamentals of Metal cutting & Cutting tools

Basics of metal cutting: Mechanism of chip formation (orthogonal and oblique cutting)-Chip thickness ratio-Velocity ratio-Merchant circle diagram-Cutting forces in orthogonal and oblique cutting -measurement of cutting forces-Types of chips: continuous, discontinuous & continuous with built up edge-Chip breakers- Basics of cutting tools: Characteristics, Cutting tool materials, properties and applications-Tool life: Taylor's equation-Variables affecting tool life and Tool wear: Causes-Mechanisms and types-machinability-Definition-Cutting fluids: Functions and types.

Centre Lathe and Special Purpose Lathe

Centre lathe: specifications-description-Nomenclature of single point cutting tool-taper turning methods-thread cutting methods-lathe accessories & attachments-Work & tool holding methods/devices-Process parameters - Definition of process parameters - cutting speed, feed, Depth of cut (DOC) & machining time. Capstan & Turret lathe: Automats – Swiss type–automatic screw type.

Shaper, Milling, Drilling and boring Machines

Shaper: Introduction- types- specifications-description-quick return mechanism. Milling: Column and Knee type milling machine-specifications-description-attachments-milling cutters-Nomenclature of plain milling cutter & operations performed-Work & tool holding methods/devices. Drilling: Introduction to Radial drilling machine and horizontal boring machine -specifications-description-Nomenclature of drill-operations performed on drilling machine-Work & tool holding methods/devices.

Sawing, Broaching and Gear Cutting

Sawing machine: hack saw- band saw- circular saw; Broaching machine: Introduction- typesspecifications- description-Types of Broaches & Operations, advantages. Gear Generation: formingshaping- hobbing.

Grinding Machines and Super Finishing Process

Grinding: Introduction-Classification-working of grinding machines-Grinding wheel (Abrasives & Bond)-Selection of Grinding wheel-mounting, glazing & loading, dressing, balancing, Work & tool holding methods/devices-Process parameters - Definition of process parameters - cutting speed, feed, DOC & machining time-Super finishing processes: Lapping-Honing-Super finishing- Polishing & Buffing

Text B	Books							
1	Jain.R.K, "Production Technology : Manufacturing Processes, Technology and Automation", 17 th Edition, Khanna Publishers, 2011							
2	Rao.P.N, "Manufacturing Technology, Vol I and II", Tata McGraw Hill Publishing Co.,2 nd edition.							
3	S. K. Hajra Choudhury, Nirjhar Roy, A. K. Hajra Choudhury, "Elements of Work shop Technology, Vol – II Machine Tools", Media Promoters and Publishers Pvt. Ltd, 2009							
Refere	Reference Books							
1	Serope Kalpakjian and Steven R.Schmid, "Manufacturing Engineering and Technology", Sixth Edition, PHI, 2010							
2	P.N.Rao, "Manufacturing Technology", Volume-2, Tata McGraw Hill, New Delhi, Third Edition, 2011.							
3	P.C. Sharma, "A Text Book of Production Technology (Manufacturing Processes)", S. Chand & Company Ltd., New Delhi, Seventh Reprint, 2012.							

Cours	Course Designers												
S.No Faculty Name		Designation	Department/ Name of the	Email id									
			College										
1	M.SARAVANAN	Associate Professor	Mech / VMKVEC	saravanan@vmkvec.edu.in									
2	C.THANGAVEL	Associate Professor	Mech / VMKVEC	thangavel@vmkvec.edu.in									

17\	1ECC			CHAN DF M.				OUR D	C	Categor	y L	Т	Р		Cred	it
			METALLURGY							CC	3	0	0		3	
	mble	nrovi	dag be	noio la	owlo	daa ir	mata	miala h	ahar	vior and	matal	118017				
		-			lowle	uge n	1 mate		benav		metar	lurgy.				
	equisit															
Cou	rse Ob	-									••		•	• • • •		1.
1	10 dis	scuss t	the cla	ISSITIC	ation,	prope	erties	and ap	plica	ation of	variou	s eng	ineer	ing	materia	als.
2	To de diagra		the st	rengt	hening	g mec	hanis	ms, fai	lure	modes	of mat	erials	and s	stud	y of ph	ase
3	³ To apply the various heat treatment methodologies and mechanical treatment methodologies.															
4	1									n metho						
5	5 To analyze the basic concepts in powder metallurgy, composite materials and working of SEM															
Course Outcomes: On the successful completion of the course, students will be able to																
CO1		Identify materials for industrial applications based on microstructureUnderstandand mechanical property relationship.														
CO2		ct suit talline		-	thenir	ng me	chanis	sm and	l its e	effects	for a			Uno	derstan	d
CO3	. mec		al pro							ments t ns in en				Арј	oly	
CO4	· vari	ous m	ateria	ls.						s of cor				Арј	ply	
CO5	real	form to time a ication	applic	ations	s. Sele	nical j ect adv	prope: vance	rties ev d mate	valua rials	ation of and va	materi rious	als fo	r	Ana	alyze	
Мар	ping w	vith P	rogra	mme	Outc	omes	and I	Progra	mm	e Speci	ific Ou	tcom	es			
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PS	01	PSO2	PSO3
CO1	S	L	-	-	-	-	L	-	-	-	-	-	I	Ĺ		
CO2	М	S	М	L	-	-	L	-	-	-	-	-	I	L		
CO3	S	М	L	М	-	-	L	-	-	-	-	-	I			
CO4	S	S	L	S	-	-	L	-	-		-	-	I			
CO5	L	S	М	S	-	-	L	-	-		-	-	I	<u>_</u>		
S- Str	rong; M	-Mediu	ım; L-	Low												

SYLLABUS

METALLIC & NON-METALLIC MATERIALS

Classification - Metallic materials- Ferrous materials -steel, classifications, effects of alloying elements added in steel, Cast iron- classifications; Non-Ferrous materials-aluminium, copper, titanium, and alloys. Non-Metallic materials- polymers, ceramics; Properties and applications.

BEHAVIOR OF MATERIALS

Introduction to plastic deformation - Slip and twinning - Types of fracture -brittle fracture, ductile fracture - Creep and fatigue.

Grain Growth: Recovery & Re-crystallization. Phase diagrams - Iron - Iron carbide equilibrium diagram - Time Temperature Transformation (TTT) and Cooling Curve Transformation (CCT) curve.

MATERIAL TREATMENT

Heat treatment- Annealing, Normalizing - Hardening and Tempering, Case hardening, Hardenability - Jominy end quench test.

Mechanical Treatment- strengthening mechanisms - strain hardening, solid solution hardening, grain size reduction

CORROSION

Introduction- forms of corrosion-pitting, intergranular, stress corrosion, corrosion fatigue, dezincification, erosion-corrosion, Crevice Corrosion, Fretting-Protection methods - PVD, CVD.

ADVANCED MATERIALS & CHARACTERIZATION

Powder metallurgy – powder production, blending, compaction, sintering-applications. Composites -Types- Metal Matrix Composites (MMC), Polymer Matrix Composites (PMC), Ceramic Matrix Composites (CMC) - properties & applications. Sample preparation methods of MMC, PMC. SEM - working principle and applications

Text I	Books								
1	William D Callister "Material Science and Engineering", John Wiley and Sons 2005.								
2	Sydney H.Avner "Introduction to Physical Metallurgy" McGraw Hill Book Company.								
Dofor	Pataranca Raaks								

Reference Books

George E. Dieter, "Mechanical Metallurgy" 1

Cours	e Designers		
			Departr
S.No	Faculty Name	Designation	Name of
			Collogo

S.No	Faculty Name	Designation	Department/ Name of the College	Email id
1	S. ARUNKUMAR	Associate Professor	Mech / VMKVEC	sarunkumar@vmkvec.edu.in
2	J. RABI	Associate Professor	Mech / VMKVEC	jrabi@vmkvec.edu.in

17. MECCO(KINEMATICS OF	Category	L	Т	Р	Credit
17MECC06	MACHINES	CC	3	0	0	3
D 11		•				

The students completing this course are expected to understand the nature and role of the kinematics of machinery, the mechanisms and machines. The course includes velocity and acceleration diagrams, analysis of mechanisms joints, Cams and their applications. It exposes the students to various kinds of power transmission devices like belt, rope, chain and gear drives and their working principles and their merits and demerits.

Prerequisite : Engineering Mechanics

Course Objective

1	To study about forces acting on various parts of mechanisms.
2	To learn the velocity and acceleration of various mechanisms.
3	To learn the construction of cam.
4	To study and analyze various types of Gears.
5	To study and analyze various types of Friction drives.
	•

Course Outcomes: On the successful completion of the course, students will be able to

CO1.	Explain the principles of kinematic pairs, chains and their classification,	Understand
CO1.	DOF, inversions, equivalent chains and planar mechanisms.	
CO2.	Determine the position, velocity and acceleration of planer mechanisms.	Apply
CO3.	Design cams and followers for specified motion profiles.	Apply
CO4.	Design gear tooth geometry by select the appropriate gears for the required applications.	Apply
CO5.	Explain friction and its effects in mechanical components	Apply

Mapping with Programme Outcomes and Programme Specific Outcomes

СО	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PSO3
CO1	S	М	L	-	L	L							-	-	-
CO2	М	S	М	М	-	L							L	-	L
CO3	S	М	L	-	L	L							М	-	М
CO4	М	L	S	L	-	L							М	-	М
CO5	S	М	L	-	-	L							L	-	L
S- Stro	ong; N	1-Med	lium;	L-Lov	V										
Syllab	us														

BASICS OF MECHANISM

Rigid body, Mechanism and Machine, Kinematic Link, Kinematic Pair -Degree of Freedom - Mobility-Kutzbach criterion- Gruebler's Criterion for degrees of freedom - Grashoff's law-Kinematic Inversions of 4-bar chain and slider crank chains-Mechanical Advantage-Transmission angle-Description of common Mechanisms-Single - Double and offset slider mechanisms - Quick return mechanisms - Ratchets and escapements - Indexing Mechanisms - Rocking Mechanisms - Straight line generators.

KINEMATICS OF LINKS

Velocity analysis: Instantaneous centre method, Kennedy's theorem, Locating instantaneous centres, Relative velocity method for slider-crank mechanism, and crank and slotted lever mechanism. Acceleration analysis: Klein's construction, slider crank mechanism, Coriolis acceleration component, Crank and slotted lever mechanism.

KINEMATICS OF CAM

Classifications - Displacement diagrams-parabolic- Simple harmonic and Cycloidal motions - Layout of plate cam profiles - Derivatives of Follower motion - High speed cams - circular arc and tangent cams - Standard cam motion.

GEARS

Gears and Gear trains: Classification, Terminology, Law of Gearing, Interferences, methods of avoiding interferences, path of contact, arc of contact. Simple gear train, compound gear train, reverted gear train, planetary/epicyclic gear train, Sun and planet gear.

FRICTION

Surface contacts-Sliding and Rolling friction - Friction drives – Friction in screw threads - Friction clutches - Belt and rope drives- Friction aspects in Brakes.

Text B	Text Books							
1	Rattan S.S, "Theory of Machines", Tata McGraw-Hill Publishing Company Ltd. New Delhi.							
2	Khurmi.R.S Gupta, "Theory of Machines". S.Chand & Co., 2001							
3	Dr. Sadhu Singh, "Theory of Machines", Pearson Education							
Refere	ence Books							
1	Thomas Bevan, "Theory of Machines", CBS Publishers and Distributors, 2005							
2	Ghosh A and A.K.Mallick, "Theory of Mechanisms and Machines", Affiliated East-West Pvt.Ltd., New Delhi.							
3	Shigley J.E and Vickes J.J, "Theory of Machines & Mechanism", McGraw Hill, 2000							
4	P L Ballaney, "Theory of Machines", Khanna Publisher							
5	Kenneth J Waldron, "Kinematics, Dynamics and Design of Machinery", Gary L Kinzel Wiley Edition.							

Cours	Course Designers										
S.No	Faculty Name	Designation	Department / College	Email id							
1	Dr. S.VENKATESAN	Professor	Mech / VMKVEC	svenkatesan@vmkvec.edu.in							
2	Prof. J. RABI	Associate Professor	Mech / VMKVEC	jrabi@vmkvec.edu.in							
3	S. ASHOK KUAMR	Assistant Professor	Mech / AVIT	ashokkumar@avit.ac.in							

17ME		7		TH	ERMA	AL.		Cate	egory	L		Т	Р	Cro	edit
		/]	ENGI	NEER	ING		C	C	2		1	0		3
Preamble Thermal Engineering is the application of thermodynamics that deals with theoretical and practical of thermal based equipment and applications. Thermal Engineering plays a major part in the design and analysis of automotive engines, rockets, jet engines, refrigeration and air-conditioning systems, and power plants, etc. This course deals with the Gas and Vapour Power Cycle, IC Engine, Compressor, Nozzles, Turbine, Refrigeration and Air conditioning. Prerequisite Engineering Thermodynamics Course Objective 1 To apply thermodynamic principles in vapour power cycles, steam nozzles and steam turbines of steam power. 2 To apply the knowledge of various thermodynamic processes to air and gas power cycles. 2 To apply the knowledge of various thermodynamic processes in Combustion process in IC												and ys a gines, h the h and			
$\frac{3}{4}$ E	Ingine	and c y and	compr l analy	essor.					-	-			stems a		
5 T		ying	the p	-		ic prop	pertie	s and	their	effects	in vari	ous ps	ychrom	etric	
Course	e Outc	comes	s: On	the s	ucces	sful co	omple	etion	of the	cours	e, stud	ents v	vill be a	ble to	
CO1.	cycle	s and	l appli	cation	n of th		dynar	nic pr	incipl	to vapo es in st	-		Apply		
CO2.	Appl cycle	y the s in	know Air a	ledge nd Ga	of va is pov	rious t	therm cle of	odyna Gas 1	amic p oower	process plants	es and		Apply		
CO3.	Ident	ify th	e app	licatio	on of t	hermo	odyna	imic p	orincip	oles of a	interna	1	Apply		
CO4.	Appl	y and								s of ref	rigerat	ion	Analyze	è	
CO5.		yze tł				prope d Air-				ffect in stems.	variou	IS A	Analyze	2	
Mappi	ng wit	th Pr	ogran	nme (Outco	omes a	nd P	rogra	mme	Specif	ic Out	tcome	5		
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	М	L	М	М		L							L		
CO2	М	М	L	М		L							L		
CO3	S	М	L	М		L							L		
CO4	S	S	М	S		L				М			L		
CO5	S	S	S	S		L				М			L		

S- Strong; M-Medium; L-Low

SYLLABUS

VAPOUR POWER CYCLES, STEAM NOZZLES AND STEAM TURBINES

Rankine cycles, effect of operating conditions on Rankine cycle efficiency, Modified Rankine cycle, regenerative cycle, reheat cycle, Binary Vapour cycle. Problems on Rankine cycle with reheat and regeneration conditions.

Steam nozzles, property calculation of steam flow through nozzles, metastable expansion of steam in a nozzle, steam injector. Problems for velocity and discharge calculation of steam. Steam turbines, classifications, impulse and reaction turbine, compounding of steam turbines,

bleeding, governing & control.

AIR AND GAS POWER CYCLES

Air standard cycles, Carnot cycle, Otto cycle, Diesel cycle, Dual cycle, problems on determination of efficiency, mean effective pressure and work. Comparison of air standard cycles. Atkinson cycle, Ericsson cycle, Stirling cycle.

Brayton cycle, gas turbines, classification, open cycle and closed cycle, Gas turbine fuels, Calculation of work output and efficiency on Brayton cycle, Application of gas turbine, problems on Brayton cycle.

INTERNAL COMBUSTION ENGINES AND AIR COMPRESSORS

Internal Combustion engines, evolution and classification, components of internal combustion engines, two stroke and four stroke engine, S.I and C.I engines, Valve timing and port timing, fuel supply systems- carburettor and fuel injection, ignition systems, cooling systems – air cooling and liquid cooing systems, lubrication systems, performance of I.C engines. Problems on performance calculation.

Air compressors- classification, reciprocating air compressor, staging, calculation of work and efficiency, clearance in compressors, intercooler, and applications. Rotary compressor, classification, centrifugal compressor, axial flow compressor, compressor characteristics – surging, choking and stalling. Problems on air compressor – single stage and multi stage.

REFRIGERATION

Refrigeration – refrigeration systems, methods of refrigeration, Air refrigeration system, Reversed carnot cycle, reversed brayton cycle, vapour compression refrigeration cyclecomponents and functions, factors affecting the performance, vapour absorption systemscomponents and functions, COP calculations, refrigerant- classifications, properties of an ideal refrigerant, common refrigerants and its applications.

PSYCHROMETRICS AND AIRCONDITIONING

Psychrometry - terms and psychometric relations, psychrometers, psychrometric charts, processes, mixing of air stream, sensible heating, sensible cooling, cooling and dehumidification, cooling and humidification, heating and humidification. Problems using psychrometic charts.

Air-conditioning systems, components and its functions, air-conditioning cycle, classification of central air conditioning, zoned systems, unitary systems, unitary – central systems, selection criteria of systems, applications, window type package units and console type package units, filters – types and functions, fans, controls – methods. Air Distribution systems – methods and functions, cooling load estimation methods, Heat load estimation.

Text Books

1 Kothandaraman.C.P, Domkundwar.S, AnandDomkundwar, "A Course in Thermal Engineering", DhanpatRai& Co. (P) Ltd., 2010.

2	Rajput.R.K, "Thermal Engineering", Laxmi Publications, 10th Edition, New Delhi, 2015.										
Refer	Reference Books										
1	Manohar Prasad., (2007), Refrigeration and Air Conditioning, New Age International.										
2	Mathur.M.L & Sharma R.P, (2009), Internal Combustion Engine, Dhanpat Rai Publications.										
Cours	e Designers										
S.No	Faculty Name	Designation	Department/Na me of the College	Email id							
1	R.CHANDRASEK AR	Assistant Professor	MECH / VMKVEC	chandrasekar@vmkvec.edu.in							
2	P.SELLAMUTHU ASSOCIATE PROFESSOR MECH / VMKVEC <u>Selsrikanth29@gmai</u>										
3	R. MAHESH	ASST. PROF II	MECH / AVIT	mahesh@avit.ac.in							

17M	ECC0	8	DYNAMI	MICS	ICS OF	Cat	egory	L	,	Т	Р	Cr	edit		
1/101	LCCU	0	MACHINES			(CC	2	r	1	0		3		
	udent v		idergo ous mec	-				•		1	•	e the ap	oplicatio	ons and	gain
Preree	quisite	: KIN	IEMAT	FICS C	OF MA	CHI	NES								
Cours	se Objo	ective													
1	To Analyze the concepts of forces acting on machines and its members.														
2	Го prov	ide an	in-dept	h know	ledge	and ap	plicat	ion of	balanc	ing of 1	nachine	es.			
3	To Ana	alyze a	and app	ly the	conce	pts of	free	vibrat	ions.						
4	To An	alyze a	and app	ly the	conce	pts of	force	ed vib	rations	5.					
5	To app	ly the	knowl	edge o	f Gov	rnor	rs and	l Gyr	oscopi	c force	es				
Cours	se Outo	comes	: On tl	ne suco	cessfu	l com	pletio	on of t	the co	urse, s	tudent	s will b	e able	to	
CO1.	Anal	yze the	e conce	pts of	force	s actii	ng on	mach	ines ai	nd its r	nember	ſS	Appl	y	
CO2.	Ident	ify the	applic	ation o	of bala	ncing	g of m	achine	es.				Apply	ý	
CO3.	Anal	yze the	e conce	pts and	d gain	the a	pplica	ation c	of free	vibrati	ion		Appl	ý	
CO4.	Anal	yze th	e conc	epts an	ıd gair	the a	applic	ation	of forc	ed vib	ration		Apply	y	
CO5.	App	y the	knowle	dge of	Gov	ernors	s and	Gyro	oscopio	c force	S		Apply	ý	
Марр	ing wi	th Pro	ogrami	ne Ou	tcome	es and	l Prog	gram	me Sp	ecific	Outcor	nes	•		
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	S	L	-	-	-	-	-	L	-	-	М		
CO2	S	М	S	L	L	М	-	-	-	L	-	-	М		
CO3	S	S	М	L	М	L	-	-	-	М	-	-	М		
CO4	S	S	М	L	М	L	-	-	-	М	-	-	М		
CO5	S	М	М	L	L	L	-	-	-	М	-	-	M		
S- Stro	ng; M-N	Mediun	n; L-Lo	w	1	1	1	1	1 1		1		1	1	1
	ABUS														

FORCE ANALYSIS

Dynamic force analysis - Inertia force and Inertia torque - D'Alemberts principle - The principle of superposition - Dynamic Analysis in Reciprocating Engines – Gas Forces - Equivalent masses - Bearing loads - Crank shaft Torque - Turning moment diagrams - Fly wheels -Engine shaking Forces

BALANCING

Static and dynamic balancing - Balancing of rotating masses - Balancing a single cylinder Engine - Balancing Multi-cylinder Engines - Partial balancing in locomotive Engines - Balancing linkages - balancing machines.

FREE VIBRATIONS

Basic features of vibratory systems - idealized models - Basic elements and lumping of parameters - Degrees of freedom - Single degree of freedom - Free vibration - Equations of motion - natural frequency - Types of Damping - Damped vibration- critical speeds of simple shaft - Torsional vibration - Natural frequency of two and three rotor systems

FORCED VIBRATIONS

Response to periodic forcing – Harmonic Forcing - Forcing caused by unbalance - Support motion - Force transmissibility and amplitude transmissibility. - Vibration isolation.

MECHANISMS FOR CONTROL

Governors; Force analysis of Porter, Proel and spring controlled governors. Controlling force, stability, sensitiveness, effort and power of governors. Characteristics - Effect of friction. **Gyroscopic Forces**: Gyroscopic couple, Effect of Gyroscopic couple on vehicle; Applications of Gyroscopic forces. - Ships and airplanes

Text Books

2	Khurmi R.S Gupta, "Theory of Machines". S.Chand & Co., 2011
---	---

Reference Books

1	Thomas Bevan, "Theory of Machines", CBS Publishers and Distributors, 2005
2	Ghosh A and A.K.Mallick, "Theory of Mechanisms and Machines", Affiliated East-West Pvt. Ltd., New Delhi.

3 Shigley J.E and Vickes J.J, "Theory of Machines & Mechanism", McGraw Hill, 2009

Course Designers

S.No	Faculty Name	Designation	Department/ Name of the College	Email id
1	Dr. S.Venkatesan	Professor	Mech / VMKVEC	svenkatesan@vmkvec.edu.in
2	J. Rabi	Associate Professor	Mech / VMKVEC	jrabi@vmkvec.edu.in
3	S. Sangeetha	Assistant Professor	Mech / AVIT	sangeethas@avit.ac.in

17MECC09	DESIGN OF MACHINE	Category	L	Т	Р	Credit
	ELEMENTS	CC	2	1	0	3

Students will be able to demonstrate the fundamentals of stress analysis, theories of failure and material science in the design of machine components. Students will be able to make proper assumptions with respect to material, factor of safety, static and dynamic loads for various machine components. Enable the students to have high ethical standards in terms of team work to be a good design engineer.

Prerequisite: Strength Of Materials

Course Objective

1	To familiarize the various steps involved in the Design Process.
2	To understand the principles involved in evaluating the shape and dimensions of a component to satisfy functional and strength requirements.
3	To learn to use standard practices and standard data.
4	To learn to use catalogues and standard machine components.
5	To learn the designing procedure for energy storing elements.

Course Outcomes: On the successful completion of the course, students will be able to

CO1.	Explain the influence of steady and variable stresses in machine component design.	Understand
CO2.	Apply the concepts of design to shafts, keys and couplings.	Apply
CO3.	Apply the concepts of design to temporary and permanent joints.	Apply
CO4.	Apply the concepts of design to energy absorbing members, connecting rod and crank shaft.	Apply
CO5.	Apply the concepts of design to bearings.	Apply

Mapping with Programme Outcomes and Programme Specific Outcomes

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3
CO1	М	L	-	-	-	L	-	-	-	-	-	-	-L	-	-
CO2	S	М	L	-	-	L	-	-	-	-	-	-	L	-	-
CO3	S	М	L	-	-	L	-	-	-	-	-	-	М	-	-
CO4	S	S	М	L	-	L	-	-	-	М	-	-	М	-	-
CO5	S	S	S	М	-	L	-	-	-	М	-	-	L	-	-
S- Strong;	S- Strong; M-Medium; L-Low														

Syllabus

STEADY STRESSES AND VARIABLE STRESSES IN MACHINE MEMBERS

Introduction to the design process - factor influencing machine design- Direct- Bending and torsional stress equations -Calculation of principal stresses for various load combinations-Factor of safety - theories of failure – stress concentration – design for variable loading – Soderberg- Goodman and Gerber relations

DESIGN OF SHAFTS AND COUPLINGS

Design of solid and hollow shafts based on strength- rigidity and critical speed – Design of rigid and flexible couplings.

DESIGN OF FASTENERS AND WELDED JOINTS

Threaded fasteners - Design of bolted joints including eccentric loading – Design of welded Joints for pressure vessels and structures - Theory of bolted joints.

DESIGN OF SPRINGS

Design of helical- leaf- disc and torsional springs under constant loads and varying loads – Concentric torsion springs

DESIGN OF BEARINGS AND FLYWHEELS

Design of bearings – sliding contact and rolling contact types– Design of journal bearings calculation of bearing dimensions – Design of flywheels involving stresses in rim and arm.

Text B	Books								
1	Design of Machine Elements-V.B.Bhandari								
2	Mechaniacl Engineering Design: Joseph E Shigley and Charles R. Mischke								
Refere	ence Books								
1	Machine Design :Robert L.Norton, Pearson Education,2001								
2	Design of Machine Elements-M.F.SPotts, T.E.Shoup,pearson Edn,2006.								
3	Fundamentals of Machine component Design–Robert C.Juvinall, Wiley India Pvt.Ltd, 3rdEdn, 2007.								
4	Engineering Des	ign G.E. Dieter.							
Cours	e Designers								
S.No	Faculty Name Designation Department / College Email id								
1	R.VENKATESH	Assistant Professor	Mech / VMKVEC	Venkateshcad2011@gmail.com					
2	J. SENTHIL Associate Professor Mech / AVIT jsenthil@avit.ac.in								

	17MECC10	ENGINEERING METROLOGY AND	Category	L	Т	Р	Credit
MEASUREMENTS CC 3 0 0 3		MEASUREMENTS	CC	3	0	0	3

The aim of the subject is to provide basic knowledge in instrumentation and measurements

Prerequisite - NIL

Course Objective

Course Objective								
1 To apply the fundamentals of basic engineering measurement system.								
2 To discuss the various instruments used for linear, angular measurement, form measure and surface finish	To discuss the various instruments used for linear, angular measurement, form measurement and surface finish							
3 To apply the knowledge of different measuring instruments like linear, angular measurement, form measurement and surface finish								
and flow measurements	To explain the principle, concepts, applications and advancements of temperature, pressure							
5 To explain the classifications, working and processes of optical measuring instruments to acquire the data and store in computer	, also							
Course Outcomes: On the successful completion of the course, students will be able to								
CO1. Calculate the sensitivity of the instruments by evaluating the error in Apprenation and the error in the	oly							
CO2. Understand the working principle and usage of various instruments used Understored for linear, angular measurement, form measurement and surface finish	Understand the working principle and usage of various instruments used Understand							
CO3.Design the various setups used for measuring linear, angular measurement, form measurement and surface finishApp								
CO4. Effectively select the appropriate instruments for temperature, pressure App and flow measurements								
CO5. Gain application oriented knowledge in the use of optical measuring Undersinstruments	stand							
Mapping with Programme Outcomes and Programme Specific Outcomes								
CO P01 P02 P03 P04 P05 P06 P07 P08 P09 P010 P011 P012 PS01 PS02	PSO3							
CO1 S M L L L L L								
CO2 S M L L								
CO3 M L M S L L								
CO4 S S M L L CO5 S M S M M L L L								
CO5 S M S M M L								
S- Strong; M-Medium; L-Low								
SYLLABUS								
BASIC PRINCIPLES & LINEAR / ANGULAR MEASUREMENT								

Basic principles of measurement - generalized configuration and functional descriptions of measuring instruments - Sensitivity- Readability - Range of accuracy - Precision - Static and dynamic performance characteristics –sources of error, classification and elimination of error. Repeatability - Systematic and random errors – Correction - Calibration - Interchangeability. Linear and angular Measurements :Vernier – micrometer - interval measurement - Slip gauges and classification - optical flats - limit gauges - Comparators: mechanical - pneumatic and electrical types – applications. -Sine bar - optical bevel protractor - Autocollimator- Angle Decker – Taper measurements.

DISPLACEMENT, SPEED & ACCELERATION / VIBRATION MEASUREMENT

Measurement of displacement: Theory and construction of various transducers to measure displacement – piezo electric, inductive, capacitance, resistance, ionization and photo electric transducers, calibration Procedures. Measurement of speed: Mechanical tachometers, electrical tachometers, stroboObjective, noncontact type of tachometer. Measurement of acceleration and vibration : Piezoelectric Accelerometer, Seismic Accelerometer , principles of seismic instruments – vibrometer.

TEMPERATURE, PRESSURE AND FLOW MEASUREMENT

Measurement of temperature:Classification , ranges, various principles of measurement, expansion, electrical resitance, thermistor , thermocouple, pyrometers , temperature

indicators.Measurement of pressure : Units, classification, different principles used., manometers, piston, bourdon, pressure gauges, bellows– diaphragm gauges. low pressure measurement, thermal conductivity gauges – ionization pressure gauges, Mcleod pressure gauge, Knudsen gauge. calibration of pressure gauges. Measurement of level : Direct method – indirect methods– capacitative, ultrasonic, magnetic, cryogenic fuel level indicators – bubler level indicators.

Measurement of flow :Rotameter, magnetic, ultrasonic, turbine flow meter, hot – wire anemometer, Laser Doppler anemometer (LDA).

FORCE, TORQUE, & STRAIN MEASUREMENTS

Measurement of force : Load cells, cantilever beams, proving rings, differential transformers. Measurement of torque: Torsion bar dynamometer, servo controlled dynamometer, absorption dynamometers. Power Measurements. Strain Measurements: Various types of stress and strain measurements – electrical strain gauge – gauge factor – method of usage of resistance strain gauge for bending compressive and tensile strains – usage for measuring torque, Strain gauge, Rosettes. Strain gauge calibration.

FORM MEASUREMENTS AND OPTICAL MEASUREMENTS

Form measurements : Measurement of screw threads - thread gauges - Floating carriage micrometer-measurement of gears-tooth thickness-constant chord and base tangent method-Gleason gear testing machine – radius measurements-surface finish - Straightness - Flatness and roundness measurements.Optical measurements : Optical MicroObjective , interference microObjective, tool makers microObjective, profile projector, vision Systems, laser interferometer – linear and angular measurements.

Text I	Books
1	Kumar D.S., Mechanical Measurements and Control, Tata McGraw Hill.

2	Jain R.K., Engineering Metrology, Khanna Publishers, 1994.								
3	GuptaS.C "Engineering Metrology"- Dhanpatrai Publications- 1984								
Refere	ference Books								
1	Alan S. Morris- "The Essence of Measurement"- Prentice Hall of India- 1997								
2	Jayal A.K- "Instrumentation and Mechanical Measurements"- Galgotia Publications 2000								
3	Beckwith T.G- and N. Lewis Buck- "Mechanical Measurements"- Addison Wesley- 199								
4	Donald D Eckm	an- "Industrial	Instrumentation"-	Wiley Eastern-1985.					
Cours	e Designers								
S.No	Faculty Name Designation Department/ Name of the College Email id								
1	J.SatheesBabu Associate Mech / VMKVEC <u>satheesbabu@vmkvec.edu.in</u> Professor								
2	J.Rabi	Associate Professor	Mech / VMKVEC	rabi@vmkvec.edu.in					

17MECC11	GAS DYNAMICS AND	Category	L	Т	Р	Credit
	JET PROPULSION	CC	2	1	0	3

This subject is providing knowledge of insight into the applications of compressible flows and the fundamentals of jet propulsion system. Formulate and solve problems in one -dimensional steady compressible flow including isentropic nozzle flow, constant area flow with friction (Fanno flow) and constant area flow with heat transfer (Rayliegh flow). To enhance the knowledge of determining the change in flow conditions through Prandtl-Meyer expansion wave and characteristic methods to solve problems in two-dimensional compressible flows

Prerequisite – ENGINEERING THERMODYNAMICS

Course Objective

1	To understand the compressible flow fundamentals
2	To analyze the flow through variable area ducts.
3	To study the compressible flow with friction and heat transfer.
4	To know the application of normal shock in compressible flow
5	To study the aircraft propulsion systems and rocket propulsion and its applications

Course Outcomes: On the successful completion of the course, students will be able to

CO1.	Understand the basic of compressible flow.	Understand
CO2.	Know to solve flow through variable area ducts.	analyze
CO3.	Know the differences between compressible and incompressible flows.	analyze
CO4.	Solve problems in Rayleigh and Fanno flow.	analyze
CO5.	Understand the knowledge about the rocket propulsion and various propellants.	Understand

Mapping with Programme Outcomes and Programme Specific Outcomes

					1					1					
СО	PO1	PO	PO1	PO1	PO1	PSO	PSO	PSO							
0	101	2	3	4	5	6	7	8	9	0	1	2	1	2	3
CO1	М	L	М	М	М	L							L		
CO2	М	М	L	М	L	L							L		
CO3	S	М	L	М	М	L							L		
CO4	S	S	М	S	М	L							L		
CO5	S	S	S	S	М	L							L		

S- Strong; M-Medium; L-Low

SYLLABUS

COMPRESSIBLE FLOW – FUNDAMENTALS

Energy and momentum equations for compressible fluid flows, various regions of flows, reference velocities, stagnation state, velocity of sound, critical states, Mach number, critical Mach number, types of waves, Mach cone, Mach angle, effect of Mach number on compressibility.

FLOW THROUGH VARIABLE AREA DUCTS

Isentropic flow through variable area ducts, T-s and h-s diagrams for nozzle and diffuser flows, area ratio as a function of Mach number, mass flow rate through nozzles and diffusers, effect of friction in flow through nozzles.

FLOW THROUGH CONSTANT AREA DUCTS

Flow in constant area ducts with friction (Fanno flow) -Fanno curves and Fanno flow equation, variation of flow properties, variation of Mach number with duct length.

Flow in constant area ducts with heat transfer (Rayleigh flow), Rayleigh line and Rayleigh flow equation, variation of flow properties, maximum heat transfer.

NORMAL AND OBLIQUE SHOCK

Governing equations, variation of flow parameters like static pressure, static temperature, density, stagnation pressure and entropy across the normal shock, Prandtl –Meyer equation, impossibility of shock in subsonic flows, flow in convergent and divergent nozzle with shock. Flow with Oblique Shock –

Fundamental relations, Prandtl"s equation, Variation of flow parameters

PROPULSION

Aircraft propulsion –types of jet engines –study of turbojet engine components –diffuser, compressor, combustion chamber, turbine and exhaust systems, performance of turbo jet engines–thrust, thrust power, propulsive and overall efficiencies, thrust augmentation in turbo jet engine, ram jet and pulse jet engines. Rocket propulsion –rocket engines thrust equation –effective jet velocity specific impulse–rocket engine performance, solid and liquid propellants.

performance, solid and liquid propertants. Text Books 1 Yahya. S.M., Fundamental of compressible flow with Aircraft and Rocket propulson", New Age International (p) Ltd., New Delhi, 2005. 2 Ganesan. V., "Gas Turbines", Tata McGraw-Hill, New Delhi, 1999. Reference Books 1 1 Rathakrishnan. E., "Gas Dynamics", Prentice Hall of India, New Delhi, 2001.

2 Patrich.H. Oosthvizen, William E.Carscallen, "Compressible fluid flow", McGraw-Hill, 1997.

Course Designers

S.No	Faculty Name	Designation	Department/Name of the College	Email id
1	P.SELLAMUTHU	Associate Professor	MECH / VMKVEC	selsrikanth29@gmail.com
2	R.CHANDRASEKAR	Assistant Professor	MECH / VMKVEC	chandrasekar@vmkvec.edu.in
3.	R. MAHESH	Assistant Professor	MECH / AVIT	mahesh@avit.ac.in

	COMPUTER	Category	L	Т	Р	Credit
17MECC12	INTEGRATED MANUFACTURING	CC	3	0	0	3

The students completing this course are expected to understand the nature and role of computers in manufacturing. The course includes computer aided design, fundamentals of CNC machines, programming of CNC machines, group technology, computer aided process planning techniques, shop floor control and flexible manufacturing systems. It exposes the students to various current trends followed in the industries.

Prerequisite: Nil

Cours	se Obje	ctive														
1	To und	lerstand	d the i	mpor	tance	of CA	D an	d CAN	Ν							
2	To ena standar			o lear	n abou	ıt Soli	d moo	delling	g techi	niques	and y	various	s grap	hics		
3	To und	To understand about the fundamentals and programming of CNC machines														
4	To gain knowledge about GT and CAPP															
5	To enable students to learn about FMS and SFC															
Course Outcomes: On the successful completion of the course, students will be able to																
CO1.													Unde	Understand		
CO2.	Apply the concept of Modeling techniques for designing the products													Apply		
CO3.	Discu mach	uss the ines.	basics	s, wor	king p	princip	oles of	e vario	ous co	mpone	ents o	f CNC	2	Appl	Apply	
CO4.		e the rent op			grams	for	vario	us m	echan	ical	comp	onents	with	App	у	
CO5.	Appl	y the puter a	conce	pts of					nd dis	scuss	the c	oncept	s of	App	у	
CO6	Anal	yze the ble Ma	funct	ions o	of vari	ous co			of Sho	p Flo	or Co	ntrol a	nd	Anal	yze	
Марр	oing wit	h Prog	ramn	ne Ou	tcom	es and	l Prog	gramr	ne Sp	ecific	Outo	omes				
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO12	PSO 1	PSO 2	PSO3	
CO1	М	L	-	-	-	-	-	-	-	-	-	-	L			
CO2	S	М	L	-	-	-	-	-	-	-	-	-	L			
CO3	S	М	L	-	-	-	-	-	-	-	-	-	М			

CO4	S	S	М	L	-	-	-	-	-	М	-	-	М	
CO5	S	S	S	М	-	-	-	-	-	М	-	-	L	
CO6	S	S	S	М	S	-	-	-	-	S	-	-	L	

S- Strong; M-Medium; L-Low

Syllabus

INTRODUCTION TO CAD/CAM

The design process - Morphology of design, Product cycle - Computer Aided Design, Benefits of CAD. Role of computers - principles of computer graphics - Current trends in manufacturing engineering - Design for Manufacturing and Assembly - Sequential and concurrent engineering -Rapid prototyping.

SOLID MODELING

Graphic software: coordinate representation- graphic functions, software standards. Graphical Kernel system (GKS) - Initial graphics exchange system (IGES) - Graphic packages. Geometric Modeling - Wire frame, Surface and Solid models - Constructive Solid Geometry (CSG) and Boundary Representation (B-REP) Techniques - Features of Solid Modeling Packages.

FUNDAMENTALS OF CNC MACHINES

CNC Technology - Functions of CNC Control in Machine Tools - Classification of CNC systems - Contouring System - Interpolators, open loop and closed loop CNC systems - CNC Controllers, Direct Numerical Control (DNC Systems). - Work holding devices and tool holding devices-Automatic Tool changers. Feedback devices - Principles of Operation-Machining Centers - Tooling for CNC machines

Numerical control codes - Standards - Manual Programming - Canned cycles and subroutines - Computer Assisted Programming, CAD / CAM approach to NC part programming - APT language, machining from 3D models.

GROUP TECHNOLOGY AND COMPUTER AIDED PROCESS PLANNING

Introduction to CIM and its related activities-History of group technology- role of G.T. in CAD/CAM integration - part families - classification and coding - DCLASS and MICLASS and OPITZ coding systems-facility design using G.T. - benefits of G.T. - cellular manufacturing. Process planning - role of process planning in CAD/CAM integration - approaches to computer aided process planning - variant approach and generative approaches - CAPP and CMPP process planning systems.

SHOP FLOOR CONTROL AND INTRODUCTION OF FMS

Shop floor control-phases-factory data collection system -automatic identification methods- Bar code technology-automated data collection system. FMS-components of FMS - types -FMS workstation -material handling and storage systems- FMS layout -computer control systems- application and benefits.

Text Books

1

Mikell.P.Groover "Automation, Production Systems and Computer Integrated

	manufacturing", Pea	rson Education 2001.										
2	Radhakrishnan P, Subramanyan.S. and Raju V., "CAD/CAM/CIM", 2nd Edition New Age International (P) Ltd., New Delhi, 2000.											
Reference Books												
1	Yoremkoren, "Computer Integrated Manufacturing System", McGraw-Hill, 1983.											
2	Ranky, Paul G., "Computer Integrated Manufacturing", Prentice Hall International, 1986.											
3	David D.Bedworth, Mark R.Hendersan, Phillip M.Wolfe "Computer Integrated Design and Manufacturing", McGraw-Hill Inc.											
4	Roger Hanman "Coi	mputer Integrated Ma	nufacturing", Addisor	n – Wesley, 1997.								
Cours	se Designers											
S.No	Faculty Name	Designation	Department / College	Email id								
1	J.SATHEES BABU	Associate Professor	Mech / VMKVEC	jsathees@gmail.com								
2	M.SARAVANAN	Assistant Professor	Mech / VMKVEC	msaravanan94@gmail.com								

17M	ECC1	3	DESIGN OF TRANSMISSION							ategor	y L	Т	Р	Cred	lit
1/11	LUUI	5			SYST	EMS	5			CC	2	1	0	3	
Prea This o		provi	des ba	usic de	esign	know	ledge	of vai	rious t	transmi	ssion s	ysten	18.		
Prere	equisit	e - DI	ESIGN	N OF 1	MAC	HINE	ELE	MEN	ГS						
Cour	se Obj	ectiv	e												
1	To unc	lerstar	nd the	design	proce	dure f	or pov	ver tra	nsmis	sion by	belt, roj	pes an	d chain	drives	
2	To des	ign th	e spur	and he	elical g	gears.									
3	To stu	ly the	design	n proce	edure	for bev	vel and	l worn	n gear	s.					
4	To learn the importance of gear box and design concepts.														
5	To study the design procedure for clutches and brakes.														
Cour	se Out	come	es: On	the s	succes	sful c	compl	etion	of th	e cours	se, stud	lents	will be	able to	
CO1.	Course Outcomes: On the successful completion of the course, students will be able to CO1 Understand the basic design procedures and designing of belts, ropes Understand														
CO2.	and		drives		nelical	gear	s at va	rious	load	conditi	ons		Δ	pply	
CO2.		-	-			-				ement.	0113			pply	
CO4.	Desi	gn th	e gear	box f	for giv	ven ap	plicat	ion					A	nalyze	
CO5.	Desi	gn th	e cluto	ches a	nd bra	akes f	or the	giver	ı appl	ication			A	pply	
Map	ping w	ith P	rogra	mme	Outc	omes	and I	Progra	amm	e Speci	fic Ou	tcom	es		
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO	PSO2	PSO3
CO1	S	М	М	М	L	-	-	-	-	-	-	L	S		
CO2	S	S	S	М	L	-	-	-	-	-	-	L	S		
CO3	S	S	М	М	L	-	-	-	-	-	-	L	S		
CO4	S	S	S	М	L	-	-	-	_		-	L	S		
CO5	S	М	М	М	L	-	-	-	-		-	L	S		
S- Str	ong; M-	Mediu	1 m; L-]	Low											
SYL	LABU	S													
DESI	IGN O	F FL	EXIB	LE D	RIVE	S									
Flat b	elts - V	belts	-Wire	ropes	s and C	Chain	Drive	s.							
DESI	[GN O]	F SPU	JR GI	EARS	AND	HEI	LICA	LGE	ARS						
Spur	Gears-	Helic	al gea	rs- Si	mple	gear d	lesign	proce	dure	with pr	oblems	8			
DESI	IGN O	F BE	VEL (GEAI	RS AN	ND W	ORM	I GEA	RS						
Straig	ght Bev	el Ge	ears-w	orm g	gears-	Simp	le gea	r desi	gn pro	ocedure	e with p	proble	ems		
DECI	GN O	F GE	CAR B	OXE	S										

Design of multi speed gear box-Geometric progression - Standard step ratio - Ray diagramkinematics layout -- gear box design problems (No. of speeds not more than 12).

DESIGN OF CLUTCHES AND BRAKES

Design of plate clutches –axial clutches-cone clutches- internal and external shoe brakesproblems.

1												
Text I	Books											
1	Shigley, Mischke, Mechanical Engineering Design, Tata Mc Graw Hill.											
2	Prabhu. T.J "Design of Transmission Elements"- Mani Offset- Chennai											
Reference Books												
1	Md.Jalaludeen- Machine Design- Anuradha Publicatiions, Chennai.											
2	Maitra G.M Prasad L.V "Hand book of Mechanical Design"- II Edition- Tata McGraw- Hill											
3	Design Data, PSG	College of Technolo	ogy, Coimbatore									
Cours	e Designers											
S.No	Faculty Name	Designation	Email id									
1	J.SENTHIL	Associate Professor	Mech / AVIT	jsenthil@avit.ac.in								

17MECC14 HEAT AND MASS TRANSFER Category L T P Credi	lit												
CC 2 1 0 3													
Preamble The purpose of this subject is to enable students understood different principles of heat transfer and its extensive engineering applications.	s												
Prerequisite ENGINEERING THERMODYNAMICS													
Course Objective													
1 To enable students understand their conduction mechanism in steady state emphasizing on													
 application in engineering. To enable students understand their conduction mechanism in unsteady state emphasizing on application in engineering. 													
To make students understand convection principles and its application.													
4 To provide radiation concepts and Heat exchangers.													
5 To enable students to understand Mass transfer and its application.													
Course Outcomes: On the successful completion of the course, students will be able to													
CO1. To gain the knowledge of basic elements& Types of conduction Understand													
CO2. To obtain the various methods of Transient heat conduction Apply													
CO3. To apply the concepts of convection systems. Apply													
CO4. To discuss the concepts of Radiation & types of Heat Exchangers. Apply													
CO5. To discuss various terminologies of Mass transfer. Understand													
Mapping with Programme Outcomes and Programme Specific Outcomes													
CO PO PO<	SO												
CO1 S M L M L L L L													
CO2 S M L M L L L													
CO3 S M M M L L L													
CO4 S M M M L M L													
CO5 S M L M L M													
S- Strong; M-Medium; L-Low													
SYLLABUS													

CONDUCTION

Introduction -Fourier law of conduction- General equation in Cartesian coordinates- One dimensional steady state conduction across Large plane wall, Long cylinder and Sphere- Composite wall – Composite cylinder – Composite sphere, Overall heat transfer coefficients, Critical Radius of insulation, conduction with Heat generation, Thermal contact resistance – Heat transfer through Walls and Roofs-Fins or extended surfaces- Pin fins, annular fins, longitudinal fins- Problems.

TRANSIENT HEAT CONDUCTION

Introduction to Unsteady state conduction – Lumped system analysis, semi – infinite solids. Transient Heat Conduction in Large Plane Walls, Long cylinders and Spheres- Refrigeration and Freezing of Foods- Problems.

CONVECTION

Introduction – Physical Mechanism on Convection, Classification of Fluid Flows, Velocity Boundary Layer, Thermal Boundary Layer, Laminar and Turbulent Flows. External Forced convection – Flow over a Flat plate, cylinder, sphere and Tube Banks. Internal Forced Convection - Flow through pipes – annular spaces and noncircular conducts. Natural convection from vertical, inclined and horizontal surfaces. Boiling – Types of Boiling. Condensation – Types of Condensation- Problems.

RADIATION AND HEAT EXCHANGERS

Introduction – Thermal Radiation – Black body Radiation – Radiation Intensity- Radioactive Properties – Atmospheric and Solar Radiation – View Factor- Simple Problems- Black surfaces and Grey Surfaces – Net Radiation – Heat Transfer in Two and Three Surface Enclosures- Radiation Shield – Problems – Radiation Exchange with Emitting and Absorbing Gases.

Heat Exchangers- Types- Overall heat transfer co-efficient- Analysis of Heat Exchangers – LMTD method – Effectiveness - NTU Method – Selection of Heat Exchangers – Problems.

MASS TRANSFER

Introduction – Analogy between Heat and Mass Transfer – Mass Diffusion - Fick's law – Steady mass diffusion through a wall – Water vapour migration in buildings – Transient Mass Diffusion- Diffusion in a Moving Medium – Mass convection – Simultaneous Heat and Mass transfer – Problems.

TEXT BOOKS

- 1. YUNUS A CENGEL "Heat Transfer"- Tata Mc Graw Hill New Delhi.
- 2. KOTHANDARAMAN C.P "Fundamentals of Heat and Mass Transfer"
- New Age International.

3. SACHDEVA R C- "Fundamentals of Engineering Heat and Mass Transfer" New Age International.

Reference Books

1. OZISIK M.N- "Heat Transfer"- Tata McGraw-Hill Book Co.

- 2. NAG P.K- "Heat Transfer"- Tata McGraw-Hill- New Delhi.
- 3. HOLMAN J.P "Heat and Mass Transfer" Tata McGraw-Hill.
- 4. INCROPRA and DEWITE, Heat Transfer John Wiley.

Course Designers

S.No	Faculty Name	Designation	Department/ Name of the College	Email id
1	C.THIAGARAJAN	ASSISTANT PROFESSOR (GRADE-II)	Mechanical/AVIT	cthiagarajan@avit.ac.in

17	лес	CC15		FIN			MEN	Г	Ca	tegor	y]	L	Т	Р	Cre	edit
					ANA	ALYS	IS			CC		2	1	0		3
	cou			es to le	earn tl	he bas	sic cor	ncepts	s of fii	nite el	ement	analys	sis (FEA) and it	s appli	cation
	Prerequisite Strength of Materials.															
Cou	Course Objective															
1 To learn basic principles of finite element analysis procedure																
2	2 Study the basics of Standard truss, beam, plane triangular and quadrilateral elements															
3	3 Analysis of one and two-dimensional problems															
4	4 Learn to model complex geometry problems and solution techniques															
5	Un	dersta	and th	e con	cepts	of hea	at tran	sfer a	ind str	uctura	al anal	ysis				
Course Outcomes: On the successful completion of the course, students will be able to																
CO1		Apply	the l	oasic o	conce	pts in	vario	us fin	ite ele	ement	structu	ires		Uı	ndersta	nd
CO2		Solve	the f	inite e	elemen	nt pro	blems	using	g the c	liffere	nt app	roache	S		Apply	
CO3	·. ;	and H	leat tr	ansfe	r.			-				nechan			Apply	
CO4				and so ams ar	-		ms in	one d	imens	ional	structu	ires inc	cluding		Apply	
CO5	. 8	and a	nalyz		n stres		-					al elen and pla		1	Analyze	
Map	ping	g witl	h Pro	gram	me O	utcor	nes ai	ıd Pr	ograr	nme S	Specifi	c Outo	comes			
CO		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO	1	S	L	L	L	-	-	-	-	-	-	-	-	L		
CO2	2	S	S	М	L	L	-	-	-	-	_	-	-	М		
CO	3	S	S	S	S	S	L	-	-	М	L	-	L	М		
CO4	4	S	S	S	М	М	L	-	-	М	L	-	-	S		
COS	5	S	S	S	S	М	-	-	-	-	-	-	-	S		
S- Sti	rong;	; M-M	edium	; L-Lo	W											

BASIC CONCEPTS OF THE FINITE ELEMENT ANALYSIS

Basics of FEA, Derive the stiffness matrix of Spring, bar and beam elements – Derive the stiffness matrix of beam elements – Problems on spring and bar elements – Local and global coordinate systems – assembly of elements, calculation of element stress – simple applications, trusses, Drive the stiffness matrix – Problems on Trusses, stiffness matrix calculation, Member stress calculation.

VARIATIONAL AND WEIGHTED RESIDUAL APPROACHES

Variational problems, Euler's Equation – Problems on solving first order differential using 2-node 1D element – Example problems, solving first order differential equation using 1D-sub-parametric elements – Weighted residualapproaches, Galerkinformulation and Point-collocation – Problems on Galerkin formulation and Point-collocationsimple regular beam sections with different types of loads – Sub-domain collocation, Least-square minimization – Problems on Sub-domain collocation and Least-square minimization regular beam sections with different types of loads.

TWO DIMENSIONAL ISOPARAMETRIC ELEMENTS AND GAUSS NUMERICALINTEGRATION

Natural coordinate systems – Interpolation function for Triangular Elements (CST, LST and QST) – Interpolation function for 4-node, 8-node and 9-node quadrilateral Elements – Element stiffness matrix formulation for two dimensional elements – Gauss Numerical Integration – Derivation of one point and two point formula (1D problems).

EIGEN VALUE PROBLEMS FOR ONE DIMENSIONPROBLEMS (DYNAMIC CONSIDERATION)

Formulation – Hamilton's Principle – Characteristic polynomialTechnique – Element mass matrix formulation for one dimensional Elements (2-node isoparametric and 3-node supparametricelements) – Problems for 1-D Problems to find eigenvalues and eigenvectors using 2-node isoparametric and 3-node isoparametric.

STEADY STATE HEAT TRANSFERANALYSIS

Introduction, straight uniform fin analysis, Derivation 1DElement matrices – Problems on straight uniform fin analysis and Taper fin analysis Heat Flex BoundaryConditions – Analysis of uniform fins using 1D Quadratic Elements – Two Dimensional Steady state Problems using CSTElements – 1-D and 2-D simple Problems using any commercial FEAsoftware.

Text Books

1	Hutton,	D.V.,	"Fundamentals	of	Finite	Element	Analysis",	McGraw	Hill,	International
I	Edition,	2004.								

2 Segerlind, L.J., "Applied Finite Element Analysis", John Wiley & Sons, 1984.

Reference Books

1	Chandrupatla, T.R., Belegundu, A.D., "Introduction to Finite Elements in Engineering", Prentice Hall of India, 2002.
2	Zienkiewicz, O.C., "Finite Elements and Approximation", Dover International, 2006.
3	Cook R.D., Malkus, D.S., Plesha, M.E., Witt, R.J., "Concepts and Applications of Finite Element Analysis", 4 th Edition, John Wiley & Sons, 2001.

Course	Course Designers									
S.No.	Faculty Name	Designation	Department/Name of the College	Email id						
1	K.Vijayakumar	Assistant Professor	Mech / AVIT	<u>vijayakumar@avit.ac.in</u>						

17\	17MECC16							Cate	egory	L	,	Т	Р	Cr	edit
1/1	ILCCR	,	Л			UN		C	C	3		0	0	,	3
To in conce	Preamble To introduce the need, evolution, and motivation for Industrial Automation. Familiarization with basic concepts and different automation strategies being used in practice worldwide. Prerequisite NIL														
1101	equisite														
Cou	Course Objective														
1	1 To understand the factory automation and integration														
2	To lear	n abou	t hydr	aulics/	/pneun	natics	circuit	ts							
3	3 To understand the various design of pneumatic and electro-pneumatic circuits														
4	To learn about PLC and its applications														
5	To understand the automation in transfer mochines & accombly														
Course Outcomes: On the successful completion of the course, students will be able to															
CO1.	Understand need and scope of industrial automationRemember														
CO2		erstand matic			nd nee	ed for i	implei	mentat	ion h	ydraulic	e and		Underst	and	
CO3		gn of p			d elec	tro-pn	eumat	ic circ	uits				Apply		
CO4		w abou											Underst		
CO5		erstand mation		asics c	of auto	matic	transfe	er mac	hines	& asser	nbly		Underst	and	
Мар	ping wit	h Prog	gramr	ne Ou	tcome	es and	Prog	ramm	e Spec	cific Ou	tcomes	5			
СО	PO1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO 2	1 PSO 1	PSO 2	PSO 3
CO1	М		5		5	0	,	0	,	0	1	L	L	2	5
CO2	М											L	L		
CO3 M S S M L L															
CO4	М		М	S	М							L	L		
CO5	М		М	S	М							L	L		
S- St	rong; M	-Medi	ium; I	L-Low											

INTRODUCTION TO FACTORY AUTOMATION AND INTEGRATION

Basic concepts and scope of industrial automation, socio-economic considerations, modern developments in automation in manufacturing and its effect on global competitiveness.-Need and implications of automation in manufacturing- Different types of production systems and automation-Hard/fixed automation

INTRODUCTION TO HYRDAULICS/PNEUMATICS

Basic elements of hydraulics/pneumatics, electro-pneumatic controls and devices, electro-pneumatic systems, fluid power control elements and standard graphical symbols for them, construction and performance of fluid power generators, hydraulic and pneumatic actuators, their design and control devices-Sequence operation of hydraulic /pneumatic actuators-Applications in manufacturing- Hydraulic & pneumatic valves for pressure, flow & direction control, servo valves and simple servo systems with mechanical feedback, solenoid-Different sensors for hydraulic, pneumatic & electro-pneumatic systems.

DESIGN OF PNEUMATIC AND ELECTRO-PNEUMATIC LOGIC CIRCUITS

Logic circuits to be designed for a given time displacement diagram or sequence of operation-Pneumatic safety and control circuits and their applications to clamping, traversing and releasing operations.

PROGRAMMABLE LOGIC CONTROLLERS (PLC)

PLC for design demonstration, programming and interface the hardware with software for modern manufacturing applications.

AUTOMATIC TRANSFER MACHINES & ASSEMBLY AUTOMATION

Classifications, analysis of automated transfer lines, without and with buffer storage, group technology and flexible manufacturing system- Types of assembly systems, assembly line balancing, performance and economics of assembly system.

тел р											
1	Esposito, A., Fluid Po	ower with Appli	cations, Prentice Hal o	f India, New Delhi .,							
2	Majumdar, S. R., Pneumatic Systems, Tata McGraw Hill, New Delhi										
Refere	ence Books										
1	Auslander, D. M. and Kempf, C. J., Mechatronics: Mechanical System Interfacing, Prentice Hall Inc., New Jersey .										
2	Deppert, W. and Stoll, K., Pneumatic Control, Vogel Verlag, Wurzburg, Germany,										
3	Herbert, E.M., Hydraulic Control System, John Wiley & Sons, New York										
Course	Designers										
S.No	Faculty Name	Faculty NameDesignationDepartment/Name of the CollegeEmail id									
1	M.SARAVANAN ASST. PROF MECH./ AVIT saravanan@avit.ac.in										

17ME		,	A	UTO	мот	IVE		Cate	egory	L		Т	Р	Cr	edit
		, 	Eľ	NGIN	EER	ING		C	C	3		0	0		3
Prean The ai		he sut	ject is	s to pi	rovide	e an ov	vervie	w of a	a com	plete a	utomol	bile e	ngineerii	ng	
Prere	quisit	e : NI	Ĺ												
Cours	se Obj	ective	;												
1	To stu	dy the	const	ructio	on and	work	cing o	f diffe	erent e	engine	compo	nents	•		
2	To stu	dy abo	out the	e diffe	erent a	uxilia	ary sys	stems	of an	autom	obile.				
	To study about the transmission system of an automobile.														
, , , , , , , , , , , , , , , , , , ,		•									spensi	on sy	stems of	an	
4 8	autom	obile.													
5	10 stu	dy the	vario	us mo	baern	altern	ate te	cnnol	ogies	of auto	mobile	es.			
Cours	se Out	come	s: On	the s	ucces	sful c	omple	etion	of the	e cours	e, stud	lents	will be a	ble to	
CO1. Demonstrate the basic lay-out of an automobile. Understand															
CO2.	2. Compare the working of petrol and diesel injection systems Understand														
CO3.	-		-	-				•		the aut		le	Underst	and	
CO4.		tify th lable	e diff	erent	types	of sus	spensi	ion an	d bral	king sy	stems		Apply		
CO5.		e use c	of the l	atest c	levelo	pment	s in au	ıtomob	oiles.				Apply		
Марр	ing w	ith Pr	ograr	nme	Outco	mes a	and P	rogra	mme	Specif	ic Out	tcom	es		
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	L	L	L									L		
CO2	S	S	М	S						S			L		
CO3	S	L	М										L		
CO4	S	М	L										L		
CO5	S	S	М	L								L	L		
S- Stro	ng; M-	Mediu	m; L-L	20W	1	<u> </u>	<u> </u>	1	<u> </u>	<u> </u>	<u> </u>	1	1	<u> </u>	1
SYLL	ABU	S													
VEHI	CLF	STRI		RF A		ENCL	NFS								
V AVALA		JINC													

Types of automobiles, vehicle construction and different layouts, chassis, frame and body, IC Engine – Classification, components of engine and their functions.

ELECTRONIC ENGINE CONTROL SYSTEMS

Electronically controlled gasoline injection system for SI engines, Electronically controlled diesel injection system - Unit injector system, Rotary distributor type and common rail direct injection system, Electronic ignition system, Types of Sensor

TRANSMISSION SYTEMS

Clutch-types and construction, gear boxes- manual and automatic, gear shift mechanisms, over drive, transfer box, fluid flywheel – propeller shaft, slip joints, universal joints, Differential and rear axle, Hotchkiss Drive and Torque Tube Drive.

STEERING, BRAKES AND SUSPENSION SYSTEMS

Steering geometry, Types of steering gear box-Power Steering, Types of Front Axle, Types of Suspension Systems, Pneumatic and Hydraulic Braking Systems, ABS and Traction Control

ALTERNATIVE FUELS & EMISSION SYSTEM

Liquefied Petroleum Gas, Bio-fuels in Automobiles- Electric and Hybrid Vehicles, Fuel Cell. Engine modifications required -Performance, Engine emission control by three way catalytic converter system, Turbo chargers, EGR.

1	R.B. Gupta- "Auto	omobile Enginee	ering "- SatyaPrakash	an					
2	Kirpal Singh, "A Edition, New Del	e	eering Vol 1 & 2 ", S	Standard Publishers, Seventh					
3	Jain, K.K., and As New Delhi	sthana .R.B, "Au	tomobile Engineerin	g" Tata McGraw Hill Publishers,					
4	Ganesan. V "Internal combustion Engine								
Refere	nce Books								
1	William Crouse- "Automobile Engineering Series "- McGraw-Hill								
2	Newton and Steed	ls- "Motor Vehic	cles "- ELBS						
3	Duffy Smith- "Au	to Fuel Systems	"- The Good Heat W	Villcox Company Inc.					
4	Osamu Hirao and Richard K. Pefley- "Present and Future Automotive Fuels "- John Wiley and Sons								
Cours	e Designers								
S.No	Faculty Name	Designation	Department/Na me of the College	Email id					
1	SANGEETHA.S ASSOC. PROF MECH./ AVIT sangeethas@avit.ac.in								

171	17MECC18	8	MAI	NUFA	CTUI	RING		Ca	tegor	y	L	Т	Р	Cre	dit
1/1	ILUU	0		INEE					CC		3	0	0		3
Prear This o		orovide	es knov	vledge	and u	nders	tandir	ng on	variou	is type	s of ma	anufactu	uring pro	ocesses	
Prere	Prerequisite : NIL														
Course Objective															
1	1 To understand the all process that involved in metal casting technology.														
2	To imp	'o impart the knowledge of various metal joining processes.													
3	To app	ly the v	various	conve	ntion	al mac	chinin	ig ope	ration	s and n	netal fo	orming]	processe	es.	
4	To imp	To impart the knowledge of forming and shaping in plastics processes													
5	To imp	art the	knowl	edge o	f vari	ous m	etal f	ormin	g and	powde	r meta	llurgy.			
Cours	se Outco	omes: (On the	success	ful co	mplet	ion of	the co	ourse,	studen	ts will	be able	to		
CO1.	To un	Idersta	nd the	concep	ots of	castin	g tech	nolog	gy				Unde	erstand	
CO2.	Apply	Apply the concepts of various welding processes. Apply													
CO3.	Enha	nce the	e applic	cation o	of vari	ious n	nachii	ning p	rocess	ses			Appl	У	
CO4.	To u plasti		and th	ie app	licatio	ons o	f var	ious	formi	ng an	d shap	oing of	Unde	erstand	
CO5.	Apply	y the c	oncept	s of va	rious	metal	form	ing an	d pov	vder m	etallurg	gy.	Appl	у	
Марр	oing with	n Prog	ramme	Outco	mes a	nd Pro	ogran	nme S	pecific	Outco	mes				
СО	PO 1	PO2	PO3	PO4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO12	PSO 1	PSO 2	PSO 3
CO1	S	М	L	L	M	M		-	-			М	M		
CO2	L	S	S	М	М	М						M	M		
CO3	L	S	М	М	М	Μ						М	M		
CO4	L	М	S	М	М	М						M	M		
CO5	CO5 M S S M														
S- Str	S- Strong; M-Medium; L-Low														

Introduction and Casting

Castingtypes,proceduretomakesandmould,typesofcoremaking,mouldingtools,machinemoulding,specia 1 moulding processes-CO2

moulding;shellmoulding,investmentmoulding,permanentmouldcasting,pressuredie casting, centrifugal casting, continuous casting, casting defects.

Welding

Classification of welding processes. Principles of Oxy-acetylene gas welding. A.C metal arc welding, Resistance welding submerged arc welding, tungsten inert gas welding, metal inert gas welding, plasma arc welding, thermit welding, electron beam welding, laser beam welding, defects in welding, soldering and brazing.

Machining

General principles (with schematic diagrams only) of working and commonly performed operations in the following machines: Lathe, Shaper, Planer, Horizontal milling machine, Universal drilling machine, Cylindrical grinding machine, Capstan and Turret lathe. Basics of CNC machines. General principles and applications of the following processes: Abrasive jet machining, Ultrasonic machining, Electric discharge machining, Electro chemical machining, Plasma arc machining and Electron beam machining and Laser beam machining.

Forming And Shaping Of Plastics

Typesofplastics-Characteristicsoftheformingandshapingprocesses-MouldingofThermoplastics-Workingprinciplesand typical applications of-Injection moulding-Plunger and screw machines-Blow moulding – Rotationalmoulding-Filmblowing-Extrusion-Typicalindustrialapplications-Thermoforming-Processing of Thermo sets-Working principles and typical applications-Compression moulding-Transfer moulding-Bonding of Thermoplastics- Fusion and solvent methods – Induction and Ultrasonic methods.

Metal Forming And Powder Metallurgy

Principles and applications of the following processes: Forging, Rolling, Extrusion, Wire drawing and Spinning, Powder metallurgy– Principal steps involved advantages, disadvantages and limitations of powder metallurgy.

1	Hajra Choudhury, "E Publishers Pv		1 0, ,	Vol. I and II, Media Promoters and					
2	Nagendra Parashar B HallofIndia Private L		R.K.,"ElementsofMan	ufacturingProcesses",Prentice-					
Refere	nce Books								
1	Serope Kalpajian, Steven R.Schmid, "Manufacturing Processes for Engineering Materials", 4/e, Pearson Education, Inc. 2007								
2	Jain. R.K., and S.C. Gupta, "Production Technology", 16th Edition, Khanna Publishers, 2001								
3	"H.M.T. "Production	Technology-	- Handbook", Tata Mc	Graw-Hill, 2000.					
Course	e Designers								
S.No	Faculty Name	Designatio n	Department/ Name of the College	Email id					
1	M.SARAVANAN	ASSO.PR OF	MECH/VMKVEC	msaravanan94@gmail.com					
2	C.THANGAVEL	ASSO.PR OF	MECH/VMKVEC	ceeteemech@gmail.com					

17MECC19	Ν	IECHA	NICS	OF		Cat	egory	L		T	Р	Cre	edit
17MECC19		MAC	HINE	S		(CC	3		0	0		3
Preamble The student will a Prerequisite : N	•	concep	t and 1	necha	nism e	mploy	ved in 1	machine	es and e	engines			
Course Objectiv	e le the types	ofking	motio	ofm	achani	ama							
1								1	· ·				
2 To disting	To distinguish the knowledge on the various types of gears and gear trains.												
3 To employ	To employ the effect of friction.												
4 To catago	4 To catagorize the knowledge of static force analysis.												
5 To distigui	sh the know	wledge	of bala	incing	and vi	ibratio	ons.						
Course Outcom	es: On the	success	sful co	mplet	ion of	the co	ourse,	studen	ts will l	be able t	0		
CO1.Describe the types of kinematics of mechanisms.Understand													
CO2. Distinguish and evaluate gear tooth geometry, types of gears and gear trains for different applications.													
CO3. Employ	the cam an	nd follo	wers f	or spe	cified	motio	n profi	les			Appl	у	
CO4. Categor	rize the stat	ic force	and d	ynami	c force	e.					Anal	yze	
CO5. Disting	uish balanc	ing pro	blems	in rota	ating a	nd rec	iprocat	ting ma	chinery	•	Analy	yze	
Mapping with P	rogramme	e Outco	mes a	nd Pr	ogram	me S	pecific	Outco	mes				
CO PO PO	O2 PO3	PO4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO12	PSO 1	PSO 2	PSO 3
	L L	М	L	L	-	-	-	-	-	-	L	-	-
CO2 M	L S	L	L	L	-	-	-	-	-	-	L	-	-
CO3 S	L L	М	М	L	-	-	-	-	-	-	L	-	-
CO4 S	14 S S S S M L L												
CO5 S	S M	S	S	L	-	-	-	-	-	-	L	-	-
S- Strong; M-M	edium; L-	Low											
SYLLABUS													
KINEMATIC O	F MECH	ANICS											

Mechanisms – Terminology and definitions – kinematics inversions of 4 bar and slide crank chain – kinematics analysis in simple mechanisms – velocity and acceleration polygons – Analytical methods – computer approach

GEARS AND GEAR TRAINS

Spur gear – law of toothed gearing – involute gearing – Interchangeable gears – Gear tooth action interference and undercutting – nonstandard teeth – gear trains – parallel axis gears trains – epicyclic gear trains – automotive transmission gear trains

KINEMATICS OF CAM

Classifications - Displacement diagrams-parabolic- Simple, harmonic and Cycloidal motions - Layout of plate cam profiles - Derivatives of Follower motion - High speed cams - circular arc and tangent cams - Standard cam motion

FORCE ANALYSIS

Applied and Constrained Forces – Free body diagrams – static Equilibrium conditions – Two, Three and four members – Static Force analysis in simple machine members – Dynamic Force Analysis – Inertia Forces and Inertia Torque – D'Alembert's principle – superposition principle – dynamic Force Analysis in simple machine members.

BALANCING AND VIBRATION

Static and Dynamic balancing – Balancing of revolving and reciprocating masses – Balancing machines-Direct and reverse crank method

Free vibrations – Equations of motion – natural Frequency – Damped Vibration –critical speed of simple shaft – Torsional vibration – Forced vibration

1	Ambekar A.G., —Mec	hanism and M	achine Theory Prentice	Hall of India, New Delhi, 2007						
2	Shigley J.E., Pennock O University Press, 2003	G.R and Uicke	r J.J., —Theory of Mach	ines and Mechanismsll, Oxford						
3	Khurmi.R.S. and Gupta	a, Theory of M	achines, S.Chand @ Co.	, 2005.						
Refere	ence Books									
1	Thomas Bevan, —Theory of MachinesII, CBS Publishers and Distributors, 1984.									
2	Ghosh.A, and A.K.Mallick, —Theory and Machinell, Affiliated East-West Pvt. Ltd., New Delhi, 1988									
3	Rao.J.S. and Dukkipatti R.V. —Mechanisms and Machinesll, Wiley-Eastern Ltd., New Delhi, 1992.									
4	Ramamurthi. V., "Mecl	hanisms of Ma	chine", Narosa Publishir	ng House, 2002						
5	Robert L.Norton, "Design of Machinery", McGraw-Hill, 2004.									
Course	e Designers									
S.No	Faculty Name	Designatio n	Department/ Name of the College	Email id						

1	J. Rabi	Associate	Mech / VMKVEC	rabi@vmkvec.edu.in
		Professor		
2	G.Nagarajan	Associate	Mech / VMKVEC	nagarajan@vmkvec.edu.in
Z		Professor		

171/16	ECC81	I	MAN	UFAC			ROCI	ESS	Ca	tegory	L	Г		Р	C	redit
					LA	B				CC	0	0)	4		2
compo	im of	ısing	lathe	and u	nderst	and a	bout tl	he bas		manufa erations						
Prerec	quisite	- NIL	1													
Cours	e Obje	ctive														
1	To Den	nonstr	ate th	e basic	opera	tions	in the	lathe.								
2	To exec	cute th	ne thre	ad cut	ting a	nd tap	per tur	ning	operati	ions in th	ne lathe					
3	To imp	lemer	t the l	cnurlin	g and	eccen	tric tur	ming o	operati	ions.						
4	To perf	orm c	ther b	asic of	peratio	ons lik	e drilli	ng bo	ring th	reading	on the l	MS plat	e			
Cours	e Outc	omes	: On f	he suc	cessfi	ıl com	nletio	n of tl	ne cou	rse, stud	lents w	ill he a	ble t	0		
CO1.	1						athe in							App	lv	
$\frac{CO1}{CO2}$	-			-				-		g and the	ead cut	ting		App	-	
CO3.			-		~ ~					onents fr		-	ike		-	
~~ .	drilli	ıg, bo	ring, l	cnurlin	ig and	eccen	tric tui	rning o	operati	ions				App	ly	
CO4.	Exec	ute ba	sic op	eration	ns like	drillir	ng bori	ng thr	eading	g on the l	MS pla	te		App	ly	
Mappi	ing wit	h Pro	gram	me Ou	itcom	es and	l Prog	ramn	ie Spe	cific Ou	tcomes	5				
СО	PO	РО	РО	PO	РО	PO	PO	РО	PO	PO10	PO1	PO1	PS	0 1	PSO	PSO
	1	2	3	4	5	6	7	8	9 1		1	2	1		2	3
CO1 CO2	S S	M M	L L	L L	-	-	-	-	L L	-	-	-	L L		-	-
CO2	S	L	L	L L	-	-	-	-	L L	-	-	-	L		-	-
			-		-	-	-	-		-	-	-			-	-
CO4	S	L	L	L	-	-	-	-	L	-	-	-	L		-	-
	ong; M	-Med	ium;	L-Lov	V											
Syllab																
	OF EX									13.60						
1. 2.				turnin				ven cy	lindri	cal MS s	pecime	n.				
2. 3.					_		0	cation	on a c	ylindrica	al speci	men.				
4.	Manu	factu	re of e	xterna	l or in	ternal	thread	s of g	iven sp	pecificati	ion on a	u cylind		-		
5.										ication o		ndrical	spec	imen		
6. 7							ming c ne on a			MS plate	e.					
7. 8.										men. ecimen						
Text B				<u> </u>				0	ľ							
1	MAI	NUFA	CTU	RING	PRO	CESS	LAB,	, MAN	NUAL							
D ^																
Refere	ences															

1	Elements of Workshop Technology- Vol. I -SK HajraChoudhury - Indian book distributing company, Calcutta- 1986. "Manufacturing Technology", Vol-1- P.N.Rao - Tata McGraw-Hill Publishing Limited-											
2	"Manufacturing" IIndEdition- 2002	C ,	-1- P.N.Rao - Tata M	lcGraw-Hill Publishing Limited-								
Cours	e Designers											
S.No	Faculty Name	Designation	Department / Name of the College	Email id								
1	S. Natarajan	Associate Professor	Mech / VMKVEC	natarajan@vmkvec.edu.in								
2	C.Thangavel	Associate Professor	Mech / VMKVEC	thangavel@vmkvec.edu.in								

CC 1 0 4 2 Preamble Machine Drawing is an indispensable communicating medium employed in industries, to furnish all the formation required for the manufacture and assembly of the components of a machine. It deals with the preparation of orthographic projections of various machine parts and assemblies and all details of roduct, regarding size, shape, material, processes, surface finish, tool and equipment as per Indian standards on drawing practices and standard components. Preequisite Variable Machine Components and create assembly drawing 2 To practice application of concept of part drawing for creating assembled view. 3 To practice application of concept of assembled drawing for creating part view. 4 To apply the concept of production drawing from machine component 5 To practice the knowledge of application in orthographic views of machine element using drafting package Course Outcomes: On the successful completion of the course, students will be able to the diagrams. Course Outcomes: On the successful completion of the course, students will be apply drawing. Course out drawing of the mechanical products from the part drawing. Apply Course out drawing of machine component Apply Course out of production drawing from the assembled view. <td cols<="" th=""><th>17MI</th><th>ECC8</th><th>2</th><th>MAC</th><th>HINF</th><th>EDRA</th><th>WIN</th><th>G LA</th><th>B</th><th>Cate</th><th>gory</th><th>L</th><th>Т</th><th>Р</th><th>C</th><th>redit</th></td>	<th>17MI</th> <th>ECC8</th> <th>2</th> <th>MAC</th> <th>HINF</th> <th>EDRA</th> <th>WIN</th> <th>G LA</th> <th>B</th> <th>Cate</th> <th>gory</th> <th>L</th> <th>Т</th> <th>Р</th> <th>C</th> <th>redit</th>	17MI	ECC8	2	MAC	HINF	EDRA	WIN	G LA	B	Cate	gory	L	Т	Р	C	redit
Machine Drawing is an indispensable communicating medium employed in industries, to furnish all the nformation required for the manufacture and assembly of the components of a machine. It deals with hor pereatation of orthographic projections of various machine parts and assembles and all details of product, regarding size, shape, material, processes, surface finish, tool and equipment as per Indian standards on drawing practices and standard components. Prerequisite To identify the machine components and create assembly drawing 2 To practice application of concept of part drawing for creating assembled view. 3 To practice application of concept of assembled drawing for creating part view. 4 To apply the concept of production drawing from machine extreme or machine. It was of a machine extrement using drafting package. Course Outcomes: On the successful completion of the course, students will be able to Course outcomes: On the successful completion of the course, students will be able to Course outcomes: On the successful completion of the course, students will be able to Course outcomes: On the successful completion of the course, students will be able to Course outcomes: On the successful completion of using from the part drawing. Course will be represent any matter or object with the help of drawing. Course out the part drawing of machine component Apply Course with part drawing	1,1,1	2000			/			0 Lin		C	С	1	0	4		2	
NIL Course Objective 1 To identify the machine components and create assembly drawing 2 To practice application of concept of part drawing for creating assembled view. 3 To practice application of concept of assembled drawing for creating part view. 4 To apply the concept of production drawing from machine component 5 To practice the knowledge of application in orthographic views of machine element using drafting package Course Outcomes: On the successful completion of the course, students will be able to Col. Interpret the drawing and represent any matter or object with the help of diagrams. CO2. Draw the assembled view of the mechanical products from the part drawing. CO3. Draw the part drawing of machine component is assembled drawing. CO4. Draw the part drawing of machine element using drafting package. CO4. Draw the production drawing of machine element using drafting package. CO5. Draw the orthographic views of machine element using drafting package. CO5. Draw the orthographic views of machine element using drafting package. CO6 10 2 3 4 4 5 6 6 7 8 9 9 0 11 2 1 2 03 CO1 1 S S 1 L 3 4 5 6 6 7 8 9 9 0 11 2 1 2 03 CO1 1 S 1 S 1 L 3 4 5 6 6 7 8 9 9 0 1 2 2 1 2 03 CO1 2 S 1 L S 1 L 4 5 6 7 6 7 8 9 0 0 1 2 1 2 03 CO2 3 S 1 L 5 1 C 5 6 7 8 9 0 0 1 2 2 1 2 03 CO3 3 S 1 L 5 1 C 5 6 7 8 9 0 0 1 2 2 1 2 03 CO3 5 1 L 5 1 L 5 1 - 5 7 7 8 9 0 0 1 2 2 1 2 03 CO3 5 1 L 5 1 L 5 1 - 5 7 7 8 9 0 0 1 2 2 1 2 03 CO3 5 1 L 5 1 L 5 1 - 5 7 7 8 9 0 0 1 2 2 1 2 03 CO3 5 1 L 5 1 L 5 1 - 5 7 7 8 9 0 0 1 2 2 1 2 03 CO3 5 1 L 5 1 L 5 1 - 5 7 7 8 7 7 8 9 0 0 1 2 2 1 2 03 CO3 5 1 L 5 1 L 5 1 - 5 7 7 7 8 9 0 0 1 0 2 1 2 1 2 03 CO3 5 1 L 5 1 L 5 1 - 5 7 7 8 7 7 8 9 0 0 1 0 2 1 2 1 2 03 CO3 5 1 L 5 1 L 5 1 - 5 7 7 8 7 7 8 9 0 0 1 0 2 1 2 1 2 03 CO3 5 1 L 5 1 L 5 1 - 5 7 7 8 7 7 8 9 0 0 1 0 2 1 2 1 2 03 CO3 5 1 L 5 1 L 5 1 - 5 7 7 8 7 7 8 9 0 0 1 0 2 1 2 1 2 03 CO3 5 1 L 5 1 L 5 1 - 5 7 7 8 7 7 8 9 0 0 1 0 2 1 2 1 2 03 CO3 5 1 L 5 1 L 5 1 - 5 7 7 7 8 7 7 7 8 9 0 0 1 0 2 1 1 2 0 03 CO3 5 1 L 5 1 L 5 1 - 5	Machi inform the pro produce Standa	ine Dr nation eparat ct, reg ards or	requinion of arding	ed for orthog size,	the m graphic shape,	anufac c proje mater	cture a ections rial, pr	nd ass of var	embly rious r es, surf	of the nachin face fin	e compo ne parts	onents of and ass	of a mae semblie	chine. It s and al	deals v l details	vith s of	
To identify the machine components and create assembly drawing 2 To practice application of concept of part drawing for creating assembled view. 3 To practice application of concept of assembled drawing for creating assembled view. 4 To apply the concept of production drawing from machine component 5 To practice the knowledge of application in orthographic views of machine element using drafting package Course Outcomes: On the successful completion of the course, students will be able to C01. Interpret the drawing and represent any matter or object with the help of diagrams. Understand C02. Draw the assembled view of the mechanical products from the part drawing. Apply C03. Draw the part drawing of the mechanical products from the assembled drawing. Apply C04. Draw the production drawing of machine element using drafting package. Apply C05. Draw the orthographic views of machine element using drafting package. Apply C06. I PO PO </td <td>Prere NIL</td> <td>quisit</td> <td>e</td> <td></td>	Prere NIL	quisit	e														
2 To practice application of concept of part drawing for creating assembled view. 3 To practice application of concept of assembled drawing for creating part view. 4 To apply the concept of production drawing from machine component 5 To practice the knowledge of application in orthographic views of machine element using drafting package Course Outcomes: On the successful completion of the course, students will be able to C01. Interpret the drawing and represent any matter or object with the help of diagrams. Understand C02. Draw the assembled view of the mechanical products from the part drawing. Apply C03. Draw the part drawing of the mechanical products from the assembled drawing. Apply C04. Draw the production drawing of machine element using drafting package. Apply C05. Draw the orthographic views of machine element using drafting package. Apply C05. Draw the orthographic views of machine element using drafting package. Apply C05. Draw the orthographic views of machine element using drafting package. Apply C05. Draw the orthographic views of machine element using drafting package. Apply C04. S S - - - - - L	Cours	se Obj	ective	e													
To practice application of concept of assembled drawing for creating part view. 4 To apply the concept of production drawing from machine component 5 To practice the knowledge of application in orthographic views of machine element using drafting package Course Outcomes: On the successful completion of the course, students will be able to Course Outcomes: On the successful completion of the course, students will be able to Course Outcomes: On the successful completion of the course, students will be able to Course Outcomes: On the successful completion of the course, students will be able to Course Outcomes: On the successful completion of the course, students will be able to Course Outcomes: On the successful completion of the course, students will be able to Course Outcomes: On the successful completion of the course, students will be able to Course Outcomes: On the successful completion of the course, students will be able to Course outcomes: Apply Apply Course outcomes: Apply Apply Course outcomes and programme component Apply Course outcomes and Programme Specific Outcomes Course outcomes and Programme Specific	1	To ide	entify	the ma	chine	comp	onents	and c	reate a	issemt	oly drav	wing					
Image: Second state of the second				<u> </u>						<u> </u>		/					
To practice the knowledge of application in orthographic views of machine element using drafting packageCourse Outcomes: On the successful completion of the course, students will be able toCourse Outcomes: On the successful completion of the course, students will be able toCourse Outcomes: On the successful completion of the course, students will be able toCourse Outcomes: On the successful completion of the course, students will be able toColspan="4">Ounderstand diagrams.Course Outcomes: On the successful completion of the course, students will be able toCourse Outcomes: On the successful completion of the course, students will be able toColspan="4">Course Outcomes: On the successful completion of the course, students will be able toColspan="4">Course Outcomes: On the successful completion of the course, students will be able toColspan="4">Course Outcomes: On the assembled view of the mechanical products from the part drawing.ApplyCourse outcome the part drawing of the mechanical products from the assembled drawing.ApplyCourse outcome outcome of machine componentApplyApplyCourse outcomes and Programme Specific OutcomesCourse outcomesCourse outcomes <th colspan<="" td=""><td>5</td><td>•</td><td></td><td>••</td><td></td><td></td><td>•</td><td></td><td></td><td></td><td>•</td><td>C C</td><td>•</td><td>ew.</td><td></td><td></td></th>	<td>5</td> <td>•</td> <td></td> <td>••</td> <td></td> <td></td> <td>•</td> <td></td> <td></td> <td></td> <td>•</td> <td>C C</td> <td>•</td> <td>ew.</td> <td></td> <td></td>	5	•		••			•				•	C C	•	ew.		
3 drafting package Course Outcomes: On the successful completion of the course, students will be able to Course Outcomes: On the successful completion of the course, students will be able to Course Outcomes: On the successful completion of the course, students will be able to Course Outcomes: On the successful completion of the course, students will be able to Course Outcomes: On the assembled view of the mechanical products from the part Apply Course outcomes and represent any matter or object with the help of drawing. Ounderstand Oraw the assembled view of the mechanical products from the part drawing. Apply Course outcomes and represent using of machine component Apply Course outcomes and Programme outcome o	т				•	•			•			•					
Course Outcomes: On the successful completion of the course, students will be able to Coll. Interpret the drawing and represent any matter or object with the help of diagrams. Understand CO1. Interpret the drawing and represent any matter or object with the help of diagrams. Understand CO2. Draw the assembled view of the mechanical products from the part drawing. Apply CO3. Draw the part drawing of the mechanical products from the assembled drawing. Apply CO4. Draw the part drawing of the mechanical products from the assembled drawing. Apply CO4. Draw the production drawing of machine component Apply CO5. Draw the orthographic views of machine element using drafting package. PO PO <th< td=""><td></td><td></td><td></td><td></td><td>owled</td><td>ge of a</td><td>applica</td><td>ation i</td><td>n ortho</td><td>ograph</td><td>ic viev</td><td>ws of m</td><td>achine</td><td>element</td><td>using</td><td></td></th<>					owled	ge of a	applica	ation i	n ortho	ograph	ic viev	ws of m	achine	element	using		
CO1.diagrams.diagrams.diagrams.diagrams.diagrams.CO2.Draw the assembled view of the mechanical products from the partApplyCO3.Draw the part drawing of the mechanical products from the assembled drawing.ApplyCO4.Draw the production drawing of machine componentApplyCO5.Draw the orthographic views of machine element using drafting package.ApplyCO5.Draw the orthographic views of machine element using drafting package.ApplyCO61234567890121203CO1SSL-L-L1CO2SLSLL-L1203CO1SSL-L1203CO3SLSLL-L111CO2SLSLLL111111111111111111111111111111111111111				Ŭ	the su	ccessf	iul cor	npleti	on of 1	the co	urse, si	tudents	s will be	able to)		
CO.Praw me assembled trew of the mechanical products from the assembled drawing.ApplyCO3.Draw the part drawing of the mechanical products from the assembled drawing.ApplyCO4.Draw the production drawing of machine componentApplyCO4.Draw the production drawing of machine componentApplyCO5.Draw the orthographic views of machine element using drafting package.PO <th colsp<="" td=""><td>CO1.</td><td></td><td></td><td></td><td>awing</td><td>and re</td><td>eprese</td><td>nt any</td><td>matte</td><td>r or ob</td><td>oject wi</td><td>th the h</td><td>elp of</td><td>τ</td><td>Jnderst</td><td>and</td></th>	<td>CO1.</td> <td></td> <td></td> <td></td> <td>awing</td> <td>and re</td> <td>eprese</td> <td>nt any</td> <td>matte</td> <td>r or ob</td> <td>oject wi</td> <td>th the h</td> <td>elp of</td> <td>τ</td> <td>Jnderst</td> <td>and</td>	CO1.				awing	and re	eprese	nt any	matte	r or ob	oject wi	th the h	elp of	τ	Jnderst	and
Draw the part drawing of the mechanical products from the assembledApplyCO4.Draw the production drawing of machine componentApplyCO5.Draw the orthographic views of machine element using drafting package.ApplyCO5.Draw the orthographic views of machine element using drafting package.ApplyMapping with Programme Outcomes and Programme Specific OutcomesCOPO <th colspan<="" td=""><td>CO2.</td><td></td><td></td><td></td><td>nbled</td><td>view c</td><td>of the 1</td><td>necha</td><td>nical p</td><td>oroduc</td><td>ts from</td><td>the par</td><td>t</td><td></td><td>Apply</td><td>1</td></th>	<td>CO2.</td> <td></td> <td></td> <td></td> <td>nbled</td> <td>view c</td> <td>of the 1</td> <td>necha</td> <td>nical p</td> <td>oroduc</td> <td>ts from</td> <td>the par</td> <td>t</td> <td></td> <td>Apply</td> <td>1</td>	CO2.				nbled	view c	of the 1	necha	nical p	oroduc	ts from	the par	t		Apply	1
Draw the production drawing of machine componentApplyCO:Draw the orthographic views of machine element using drafting package.ApplyMapping with Programme Outcomes and Programme Specific OutcomesCO:PO:PO:PO:PO:PO:PO:PO:PSO:	CO3.			-	lrawin	g of th	ne mec	chanica	al proc	lucts f	rom the	e assem	bled		Apply	1	
CO5. Draw the orthographic views of machine element using drafting package. Mapping with Programme Outcomes and Programme Specific Outcomes CO PO PO <t< td=""><td>CO4.</td><td>Dr</td><td>aw the</td><td>e produ</td><td>uction</td><td>drawi</td><td>ng of 1</td><td>nachir</td><td>ne com</td><td>poner</td><td>nt</td><td></td><td></td><td></td><td>Apply</td><td>1</td></t<>	CO4.	Dr	aw the	e produ	uction	drawi	ng of 1	nachir	ne com	poner	nt				Apply	1	
CO PO PO <th< td=""><td>CO5.</td><td>Dr</td><td>aw the</td><td>e ortho</td><td>graphi</td><td>ic viev</td><td>vs of r</td><td>nachin</td><td>e elen</td><td>nent us</td><td>sing dra</td><td>afting pa</td><td>ackage.</td><td></td><td>Apply</td><td>1</td></th<>	CO5.	Dr	aw the	e ortho	graphi	ic viev	vs of r	nachin	e elen	nent us	sing dra	afting pa	ackage.		Apply	1	
CO 1 2 3 4 5 6 7 8 9 0 1 2 1 2 03 CO1 S S - - - - - - L - L 2 03 CO1 S S - - - - - L - L - L - 1 2 03 CO2 S L S L - - - - - L - L - L - L - L - 1 2 03 CO2 S L S L - L - - - L - L - L - L - L - L - L - 1 <td>Mapp</td> <td>oing w</td> <td>ith Pr</td> <td>ogran</td> <td>nme O</td> <td>Outcon</td> <td>nes an</td> <td>nd Pro</td> <td>gram</td> <td>me Sp</td> <td>ecific (</td> <td>Outcom</td> <td>nes</td> <td></td> <td></td> <td></td>	Mapp	oing w	ith Pr	ogran	nme O	Outcon	nes an	nd Pro	gram	me Sp	ecific (Outcom	nes				
CO2 S L S L - - - - - L - L - L CO3 S L - L - - - - L - L - L - L - - - - L - L - - - - - L - L - - - - - L - - L - </th <th>СО</th> <th></th>	СО																
CO3 S L - L - - - - M - L - CO4 S M L - - - - M - L - CO5 L L L - - L - - L - - - M - L - - - - M - L - - - - M - L - - - - M - L - - - - M - L - - - - M - L - <td< td=""><td>CO1</td><td>S</td><td>S</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>L</td><td>-</td><td>L</td><td></td><td></td></td<>	CO1	S	S	-	-	-	-	-	-	-	-	L	-	L			
CO4 S M L - - - - - - M - L I CO5 L L L - - L - - L - L - I </td <td>CO2</td> <td>S</td> <td>L</td> <td>S</td> <td>L</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>L</td> <td>-</td> <td>L</td> <td></td> <td></td>	CO2	S	L	S	L	-	-	-	-	-	-	L	-	L			
CO5 L L L L - L - L - L	CO3	S	L	-	L	-	-	-	-	-	-	М	-	L			
	CO4	S	М	L	-	-	-	-	-	-	-	М	-	L			
S- Strong; M-Medium; L-Low	CO5	L	L	L	-	-	-	L	-	-	-	L	-	L			
	S- Str	ong; I	M-Me	dium;	L-Lo	W											
SYLLABUS	SYLL	ABU	S														

Drawing of Machine Elements and simple parts

Selection of Views, additional views for the following machine elements and parts with every drawing proportions.

a) Popular forms of Screw threads, bolts, nuts, stud bolts, tap bolts, set screws.

b) Keys, cotter joints and knuckle joint.

- c) Riveted joints for plates
- d) Shaft coupling, spigot and socket pipe joint.
- e) Journal, pivot and collar and foot step bearings.

Assembly Drawings

Drawings of assembled views for the part drawings of the following using conventions and easy drawing proportions.

a) Engine parts –stuffing boxes, cross heads, Eccentrics, Petrol Engine connecting rod, piston assembly.

b) Other machine parts -Screws jacks, Machine Vices Plummer block, Tailstock.

c) Valves: Steam stop valve, spring loaded safety valve, feed check valve and air cock.

ICAU												
1	Bhatt-N.D"Machin India- 2003	ne Drawing"-Publishe	ed by R.C.Patel- Char	tstar Book Stall- Anand-								
2	P.S.G. Design Data	a Book										
Refer	erence Books											
1	Sidheswar- N Kar	nniah- P. and Sastry-	V.V.S "Machine Dr	rawing ". TMH.								
2	P.S. Gill, "A Text New Delhi. 2004.	Book of Machine I	Drawing", Seventh e	edition Reprint, S. K. Kataria & Sons.								
3	R.K. Dhawan, "A' Sons, New Delhi, 1		ne Drawing", First H	Edition, Sultan Chand and								
Cours	se Designers											
S.N o	Faculty Name	Designation	Department/ College	Email id								
1	R.VENKATESH	Assistant Professor	Mech / VMKVEC	rvenkatesh@vmkvec.edu.in								
2	C.THANGAVE L	Assistant Professor	Mech / VMKVEC	thangavel@vmkvec.edu.in								

17M	IECC83														
			T	ECHN	OLO	GY L	AB		C	С	0	0	4		2
The a mach	Preamble The aim of the subject is to provide knowledge in using of the special machines. To handle the different machines like Shaping machine, Milling Machine, Slotting machine, Grinding Machines, Gear Hobbing etc. Using these machines produce different components with specified shape and size. Prerequisite														
Prere NIL	equisite														
Cour	Course Objective														
1															
2															
3															
4															
5															
Cour	Course Outcomes: On the successful completion of the course, students will be able to														
CO1.	CO1. Apply the basic operations in the shaping machine including stroke adjustment and Apply Apply														
CO2.	Apply														
CO3.	Make	e gear	rs using	g milli	ng ma	chine a	and ho	bbing	machi	ines.				A	pply
CO4.	Produ	ice la	rge fla	t surfa	ces us	ing pla	anning	mach	ines.					Aj	pply
CO5.	Hand mach		ferent	grindi	ng ma	chines	like c	ylindr	ical, sı	urface a	nd centr	e less gi	rinding	A	pply
Map	oing wit	h Pro	ogram	me Oı	itcom	es and	l Prog	ramn	ne Spe	cific Ou	itcomes				
СО	PO1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10	PO1 1	PO1 2	PSO 1	PSO 2	PSO3
CO1	S	S	-	-	-	-	-	-	-	-	L	-	L		
CO2	S	L	S	L	-	-	-	-	-	-	L	-	L		
CO3	S	L	-	L	-	-	-	-	-	-	М	-	L		
CO4	S	М	L	-	-	-	-	-	-	-	М	-	L		
CO5	L	L	L	-	-	-	L	-	-	-	L	-	L		
S- Sti	S- Strong; M-Medium; L-Low														

LIST OF EXPERIMENTS

- 1. Make a square end from a given round bar by using shaping machine.
- 2. Make an inclined surface from a given specimen by using shaping machine.
- 3. Make a hexagonal block from a given round stock by using plain milling machine.
- 4. Make a spur gear from the given blank by using universal milling machine.
- 5. Make an external keyway on a given round rod by using vertical milling machine.
- 6. Make an internal keyway on a given hallow specimen by using slotting machine.
- 7. Make a grinding process on a machined surface as given surface finish by using cylindrical grinding machine.
- 8. Make an internal thread cutting on a given specimen as per given dimensions by the sequence drilling, boring, reaming and tapping by using respective tools and machines.

Text Books

1 MANUFACTURING TECHNOLOGY LAB Manual

Reference Books

1	HajraChoudhury, "Elements of Workshop Technology", Vol. I and II, Media Promoters and Publishers Pvt., Ltd., Mumbai, 2005.
2	NagendraParashar B.S. and Mittal R.K., "Elements of Manufacturing Processes", Prentice- Hall of India Private Limited, 2007.
Cours	e Designers

S.No	Faculty Name	Designation	Department/ College	Email id
1	C. THANGAVEL	Assistant Professor	Mech / VMKVEC	thangavel@vmkvec.edu.in
2	S. NATARAJAN	Associate Professor	Mech / VMKVEC	natarajan@vmkvec.edu.in

17N/	IECC	84	T	MET		IRCV	LAB	2	C	ategor	y I	T	Р	Cr	edit
1710.	ILCC	07	T	VIL I F	NELC		LAD	•		CC	() 0	4		2
Prea This		e prov	ides t	he bas	sic kn	owled	lge ab	out th	e phy	sical m	etallur	gy - m	etallog	raphic	
Prer	equisi	te - N	IL												
Cour	rse Ob	ojectiv	ve												
1						U	raphic								
2	To pr mater		e the r	netho	dolog	ies foi	r prepa	aring	the sp	ecimer	ns of fe	rrous a	ind nor	i ferrou	S
3				rience crosc		ne fino	ding o	ut of	ferrou	is mate	rial spe	ecimen	s throu	gh	
4	Meta	llurgi	cal mi	icrosc	ope									hrough	
5	To pr	actice	e the d	liffere	nt typ	oes of	heat t	reatm	ent m	ethods	for eng	gineeri	ng mat	erials.	
Cour	rse Ou	itcom	es: O	n the	succe	essful	comp	letio	n of tl	ie coui	rse, stu	dents	will be	able to)
CO1.				oasic k eir pro			about	the fe	rrous	and no	n ferro	us	Und	lerstand	
CO2.	-			nt me us ma		0	for p	repari	ng sp	ecimen	s of fe	rrous	App	oly	
CO3.										es to f al mici			Арр	oly	
CO4.										es to f al mici			App	oly	
CO5.	-			• 1			reatme pertie		ethods	s for en	gineeri	ng	Ana	alyze	
Map	ping v	vith I	Progra	amme	e Out	come	s and	Prog	ramn	ne Spec	cific O	utcom	es		
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	L	L	L	L	-	-	-	-	-	-	-	L	L		
CO2	S	S	М	S	-	-	-	-	М	-	-	М	L		
CO3	S	S	S	S	-	-	-	_	М	_	-	М	S		
CO4	S	S	S	S	-	-	-	_	М	_	-	М	S		
CO5	S	S	S	S	-	-	-	-	S		-	S	S		
S- Str	ong; M	I-Med	ium; L	-Low	_	_	_	_	_						

LIST OF EXPERIMENTS:

- 1. Introduction to Metallographic
- 2. Preparation of Metallographic specimen
- 3. Identification of Ferrous specimens (minimum 4)
- 4. Identification of Non-Ferrous specimens (minimum 2)
- 5. Heat treatment Annealing- comparison between annealed and un heat treated specimen
- 6. Heat treatment Normalizing- comparison between normalized and un heat treated specimen
- 7. Heat treatment Hardening- comparison between hardened and un heat treated specimen
- 8. Heat treatment -Tempering- comparison between hardened and un heat treated specimen

ICAU	books			
1	METALLURGY I	AB Manual		
Refer	ence Books			
1	William D Callister	"Material Science	and Engineeri	ng", John Wiley and Sons 2005.
2	Sydney H.Avner "In	ntroduction to Phys	ical Metallurg	y" McGraw Hill Book Company.
Cours	se Designers			
S.No	Faculty Name	Designation	Department/ College	Email id
1	J.SATHEES BABU	Associate Professor	Mech / VMKVEC	jsathees@gmail.com
2	S. ARUNKUMAR	Associate Professor	Mech / VMKVEC	sarunkumar@vmkvec.edu.in

17\/1	ECC85	FN	ICIN	г тг	STIN	G LAB	Ca	tegor	y]	L	Т	Р	Cr	edit
1/1011	ECC05	L 1	NGIIN		51111	G LAD		CC		0	0	4	,	2
	aborator mance a	•				o give the ngines.	e studen	ts, exp	perime	ntal kn	lowledg	e on the	9	
NIL	quisite													
Cours	e Objec	ctive												
	Fo pract engines.	ice th	e stud	lents t	o get t	he know	ledge of	f testir	ng of f	uels in	internal	l combi	istion	
2 7	Го provi	de a l	knowl	ledge	in fuel	s and lul	oricants	prope	rties.					
3 7	Fo pract	ice th	e stud	lents t	o conc	luct the p	perform	ance a	nd hea	ıt balar	nce test	on IC e	ngines.	
	Fo pract				o get t	he know	ledge in	perfo	ormanc	e char	acteristi	cs of in	ternal	
Cours	e Outco	omes:	On t	he su	ccessf	ul comp	letion o	f the c	course	, stude	ents will	be ab	le to	
CO1.	To lea	arn th	e testi	ing of	variou	ıs fuels i	n intern	al con	nbustic	on engi	nes.	Unde	rstand	
CO2.	Under	rstanc	l the v	ariou	s prop	erties of	fuels an	d lubr	rication	n prope	erties.	Unde	rstand	
002.														
CO3.	with t	heore	etical	diagra	ım.		ing diag			-			rstand	
CO3.	with t Condu	heore uct th	etical o e Perf	diagra forma	im. nce tes	st and ret				-			rstand rstand	
CO3. CO4.	with t Conduction	heore uct th / twii	etical o e Perf n cylii	diagra forma nder d	im. nce tes liesel e	st and ret	ardatior	n test o	on a fo	ur stro	ke		rstand	
CO3. CO4. CO5.	with t Condu- single To Pe	heore uct th / twin rform	etical of e Perf n cylin n test of	diagra forma nder d on vai	im. nce tes liesel e riable o	st and ret	ardatior sion rati	n test o o engi	on a fo ne wit	ur stro h biofu	ke uel.	Unde	rstand	
CO3. CO4. CO5.	with t Condu- single To Pe	heore uct th / twin rform	etical of e Perf n cylin n test of	diagra forma nder d on vai	im. nce tes liesel e riable o	st and ret engine compress	ardation sion rati	n test o o engi	on a fo ne wit	ur stro h biofu	ke uel.	Unde	rstand	PSO3
CO3. CO4. CO5. Mappi	with t Condu- single To Pe	heore uct th / twin rform n Pro	etical o e Perf n cylin n test o gram	diagra forma nder d on vai	im. nce tes liesel e riable o Putcom	st and ret engine compress nes and l	ardation sion rati	n test o o engi nme S	on a fo ne wit S pecifi	ur stro h biofu	ke uel. comes	Under Apply	rstand	PSO3
CO3. CO4. CO5. Mapp CO	with t Condu- single To Pe ing with PO1	heore uct th / twin rform n Pro	etical of e Perf n cylin n test of gram	diagra forma nder d on var me O	im. nce tes liesel e riable o Putcom	st and ret engine compress nes and I PO6 PO	ardation sion rati	n test o o engi nme S	on a fo ne wit S pecifi	ur stro h biofu	ke uel. comes	Under Apply PSO1	rstand	PSO3
CO3. CO4. CO5. Mappi CO CO1	with t Condu- single To Pe ing with PO1 S	heore uct th / twin rform h Pro PO2 L	etical of e Perf n cylin n test of gram PO3 M	diagra forma nder d on var me O PO4 M	im. nce tes liesel e riable o Putcom	st and ret engine compress nes and l PO6 PO L	ardation sion rati	n test o o engi nme S	on a fo ne wit S pecifi	ur stro h biofu	ke uel. comes	Under Apply PSO1 L	rstand	PSO3
CO3. CO4. CO5. Mappi CO CO1 CO2	with t Condu- single To Pe ing with PO1 S S	heore uct th / twin rform PO2 L L	etical of e Perf n cylin n test of gram PO3 M M	diagra forma nder d on var me O PO4 M M	im. nce tes liesel e riable o Putcom	st and ret engine compress nes and I PO6 PO L L L	ardation sion rati	n test o o engi nme S	on a fo ne wit S pecifi	ur stro h biofu	ke uel. comes	Under Apply PSO1 L L	rstand	PSO3

LIST OF EXPERIMENTS

1. Determination of Viscosity of the given specimen oil by using Red Wood Viscometer.

2. Determination of Flash Point and Fire Point of the given fuel sample.

3. Actual valve timing diagram of a four stroke engine and comparison with theoretical valve timing diagram.

4. Actual port timing diagram of a two stroke engine and comparison with theoretical port timing diagram.

5.Performance test on a four stroke single/ twin cylinder diesel engine.

6. Determination of frictional power of a four cylinder petrol engine by conducting a Morse test.

7. Conduct a retardation test and determine frictional power in a diesel engine.

8. Performance test on variable compression ratio engine with biofuel.

Text Books

1

ENGINE TESTING LAB Manual

Course Designer

S.No	Faculty Name	Designation	Department/Name of the College	Email id
1.	A.SENTHILKUMAR	AP-II	MECH/AVIT	senthilkumar@avit.ac.in

17M	FCCS	CCC86 DYNAMICS AND METROLOGY LAB Category L T P Credit													
			METR	OLO	GY L	ΔB				CC	0	0	4		2
The a dyna	mics a	and m	subject neasuri				ic kno	owled	ge in	mecha	nisms 1	related to	o mach	ine	
Prer NIL	equisi	ite													
Cour	se Ol	ojecti	ive												
1	With needed Instrumentation. To enable students understand the Motions, suspensions, vibrations of the machine parts														
2	with experimental setups with needed instrumentation														
3	3 To make students understand the concepts of angular measurement														
4	4 To provide the concepts of measurement with flow, speed, displacement, temperature with experimental setups with needed instrumentation														
5	with experimental setups with needed instrumentation														
Cour	5 To provide the concepts of measurement of the cutting forces with experimental setups Course Outcomes: On the successful completion of the course, students will be able to														
CO1.	COURSE Outcomes: On the successful completion of the course, students will be able to CO1. To capable of doing the experiments of various governor equipments.														
CO2	To capable of doing the experiments of various governor equipments.														
CO3	То	able	to con	duct tl	he sta	tic equ	uipme	ents ,fo	or me	asure tl	he ang	le, conto	ur		
CO4	То	capa	ble the	e mea	suring	g expe	rimen	ts wit	h proj	per equ	iipmen	ts for flo	w,tem	p,spee	d
CO5	То	able	to con	duct d	ynam	ic equ	ipme	nts ,fc	or mea	asure th	ne force	es,angles	5		
Мар	ping	with	Progra	amme	e Out	comes	s and	Prog	ramn	ne Spec	cific O	utcomes	5		
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	L	-	-	-	-	-	-	-	L	-	L	-	-
CO2	S	М	М	L	-	-	-	-	-	-	L	-	L	-	-
CO3	S	L	-	М	-	-	-	-	-	-	L	-	L	-	-
CO4	S	S	М	-	М	М	L	-	-	-	М	-	L	-	-
CO5	S	S	L	-	М	М	-	-	-	-	М	-	L	-	-
S- Str	S- Strong; M-Medium; L-Low														

1. To perform an experiment on Watt and Porter Governor to prepare performance characteristic curves and to find stability and sensitivity

2. To determine the position of sleeve against controlling force and speed of a Hartnell governor and to plot the characteristic curve of radius of rotation

3. To analyse the motion of a motorized gyroscope when the couple is applied along its spin axis and determine gyroscopic couple

4. Determine the Moment of Inertia by compound pendulum and tri-filar suspension.

5. To determine the frequency of undamped free vibration and damped forced vibration of an equivalent spring mass system.

6. To determine whirling speed of shaft theoretically and experimentally.

7. Angular Measurements using Bevel Protector and Sine Bar

8. Flow Measurement using a Rotameter.

9. Fundamental dimension measurement of a gear using a contour projector.

10. Measurement of Displacement using Linear Variable Differential Transducer.

11. Measurement of speed of Motor using Stroboscope.

12.Measurement of cutting forces using Lathe Tool Dynamometer

TEXT BOOKS

- 1. Dynamics lab manual
- 2. Metrology and Measurements lab Manual

Course Designers

S.No	Faculty Name	Designation	Department/ Name of the College	Email id
1	R.MAHESH	ASSISTANT PROFESSOR (GRADE-II)	Mechanical/AVIT	mahesh@avit.ac.in

				0140	рн г				(Categor	'y	L	Т	'[]]	P C	redit
17MI	ECC8	7		OMO INEE						CC	0		0	4	2	
Prear To i		trainir	ng in a	ssemb	ling a	nd disi	nantli	ng of a	liffere	nt types	of eng	ine c	ompo	onents		
Prere	equisit	e – NI	L													
Cour	se Ob	jective	9													
1		umiliar els of d				stude	nts or	the	constr	uctional	arran	geme	ents o	of dif	ferent	Engine
2		miliar ent vel			the s	tudent	ts on t	the co	nstruc	tional a	rranger	nents	s of c	liffere	ent Cha	ssis of
3 To learn the function of Automotive Electronics components of testing and measurements																
Cour	se Ou	tcome	s: On	the su	ccess	ul cor	npleti	on of 1	the co	urse, st	udents	will	be al	ble to		
CO1.		oply th ferent								ional ar	rangem	ents	of		Apply	Į
CO2.		ply th ferent						the co	onstruc	tional a	rrange	ment	s of		Apply	ł
CO3.	tes	Evalu ting a		ne fu asuren		n of A	Autom	otive	Electr	onics	compo	nents	of		Evalua	te
Марр	ping w	ith Pr	ogran	nme C	outcor	nes an	d Pro	gram	me Sp	ecific O	utcom	es				
СО	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO	012	PS O1	PSO 2	PSO 3
CO1	S	S	-	-	-	-	-	-	L	-		-	-	L		
CO2	S	L	S	L	М	-	-	-	L	-		-		L		
CO3	S	s	-	L	М	-	-	-	L	-		-		L		
S- Sti	rong;	M-Me	dium;	L-Lo	W	-	-	-	-			•				
SYLI	LABU	S:														

- 1) Dismantling & assembling of 6 cylinder petrol engine.
- 2) Dismantling & assembling of 4 cylinder petrol engine.
- 3) Dismantling & assembling of 3 cylinder diesel engine.
- 4) Gear box Sliding mesh, Constant mesh & Synchromesh Gear Box, Transfer case
- 5) Steering system, Braking system
- 6) Study of oil filter, fuel filter, fuel injection system, carburetor, MPFI
- 7) Study of ignition system components coil, magneto and electronic ignition systems.
- 8) Study of engine cooling system components, Study of engine lubrication system components
- 9) Ovality and taper measurement of cylinder bore and comparison with standard specifications
- 10) Clutch 2 types Coil spring& Diaphragm spring clutches

REFER	REFERENCES 1. Automobile engineering practices R.P GUPTA.											
	1. Automobile e	ngineering practices	R.P GUPTA.									
	2. Automobile e	ngineering KIRPAL	SINGH									
S.No	Faculty Name	Designation	Departmen t/ College	Email id								
1	SAMUVEL MICHAEL	Asso.Prof Gr-II	MECH/AVI T	samuvelmichael@avit.ac.in								

17M	IEC	C 88) MPU IANU					C	ategory	y I	T	Р	Cr	edit
			14		TACI		U LA	D		CC	() 0	4		2
Prear This c			ides th	e basic	know	ledge	about	CNC 1	nachir	ne and C	CNC pro	ogramn	ning		
		ite – N									Ĩ	0	0		
Cour	se O	bjectiv	ve												
1						•			•	turning	and mil	ling.			
2	Тор	oractic	e the m	ethodo	logies	for w	riting	the CN	IC pro	ogram .					
3	To l	earn a	nd writ	e the p	rogran	n using	g mirro	oring,	left / r	ight har	ıd radiu	s comp	ensatio	n concej	ot.
4				ram fo		e			•	ē					
5	То у	write tl	ne prog	ram in	canne	d cycl	es and	subro	utines	•					
Cour	se O	utcom	es: On	the su	ccessf	ul cor	npleti	on of t	the co	urse, st	udents	will be	e able to		
CO1.	ſ	o lear	n the b	asic kn	owled	ge abo	out G a	ind M	codes				Und	erstand	
CO2.				gramm olation		owled	ge to v	write tl	he pro	gram fo	r linear	and	App	ly	
CO3.		.	he kno ogram	•	e of mi	rrorin	g and s	subrou	tine c	oncepts	to write	e the	App	ly	
CO4.	A	Apply t	he kno	wledge	e of Le	ft han	d and 1	right h	and ra	dius co	mpensa	tion.	App	ly	
CO5.		•		ifferent ing, bo	• •				ncludi	ng turn	ing, fac	ing,	Ana	lyze	
Марр	oing	with H	rogra	mme (Outcon	nes an	d Pro	gram	me Sp	ecific (Outcom	es			
СО	PC 1	PO PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3
CO1	L	L	L	L	-	-	-	-	-	-	-	L	L		5
CO2	S	S	М	S	-	-	-	-	М	-	-	М	L		
CO3	S	S	S	S	-	-	-	-	М	-	-	М	S		
CO4	S	S	S	S	-	-	-	-	М	-	-	М	S		
CO5	S	S	S	S	-	-	-	-	S		-	S	S		
S- Sti	ong	; M-M	edium	; L-Lo	W	_	_	_	_			_			
SYLI		US:													

Introduction:

- 1. Study of G and M codes
- 2. Manual Part Programming for CNC Machines using Stand G and M Code.
- 3. Machining practice on Trainer Type CNC Machines-
- 4. Simulation of tool path using any CAM Software

Part programming in CNC Milling:

- 1. Point to point motions
- 2. Linear motions
- 3. Circular interpolations
- 4. Contour motions
- 5. Rectangular pocketing
- 6. Mirroring
- 7. Circular Pocketing
- 8. Fixed /canned cycles
- 9. Subroutines

Part programming for CNC Turning :

- 1. Turning and facing
- 2. Step turning, Taper Turning
- 3. Grooving
- 4. Fixed/Canned Cycles :
- 5. Thread cutting Cycles
- 6. Peck Drilling Cycles

1	CAM LAB Manual			
Course	Designers			
S.No	Faculty Name	Designation	Departmen t/ College	Email id
1	M.SARAVANAN	Asst. Professor	Mech / VMKVEC	msaravanan94@gmail.com

1 7 ME	CC89	Ц	EAT	тра	NSFF		A R		Cat	tegory	L	Т	Р	C	redit
		11	LAI	INA			AD			CC	0	0	4		2
											n unde	rstanc	ling of di	fferent	
	quisite						1			1					
Cours	se Obj	ectiv	ve												
	To imp needed					of co	nducti	ion he	at tra	nsfer ir	n exper	iment	al setups	with	
/	To ena on app						eir coi	nducti	on me	echanis	sm in u	nstead	dy state e	emphas	izing
3 7	To mal	ce st	udent	s und	erstan	d con	vectio	on prii	nciple	s and i	ts appl	icatio	n.		
4	To pro	vide	radia	tion c	oncep	ots and	d Heat	t exch	anger	s.					
5	To ena	ble s	studer	its to	under	stand	Stefa	n Bolt	zman	n's cor	nstant c	concep	ots.		
Cours	se Out	com	es: O	n the	succe	essful	comp	oletion	n of tl	ne cou	rse, stu	Ident	s will be	able to)
CO1.	To c	apał	ole of	doing	the e	xperi	ments	in co	nduct	ion sys	tems.		Apply		
CO2.	-		the k on sys		dge o	f con	ductin	g exp	erime	nts of	transie	nt	Apply		
CO3.	Тосо	ondu	icting	the ex	xperir	nents	of coi	ivecti	on sy	stems.			Apply		
CO4.	To P	erfo	rm the	e expe	rimer	nts of	Radia	tion F	Ieat E	xchang	gers.		Apply		
CO5.	То са	ipab	le of o	doing	the ex	xperir	nents	Stefa	n Bolt	zmann	's setu	p.	Apply		
Марр	ing wi	th P	Progra	amme	Out	come	s and	Prog	ramn	ne Spe	cific O	utcon	nes		
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	2 PSO1	PSO2	PSO3
CO1	S	S	-	-	-	-	-	-	-	-	L	-	L	-	-
CO2	S	L	S	L	-	-	-	-	-	-	L	-	L	-	-
CO3	S	L	-	L	-	-	-	-	-	-	М	-	L	-	-
CO4	S	М	L	-	-	-	-	-	-	-	М	-	L	-	-
CO5	L	L	L	-	-	-	L	-	-	-	L	-	L	-	-
S- Stro	ng; M-	Medi	ium; L	-Low									·		

- 1.Determination of Thermal conductivity(Lagged Pipe)
- 2.Determination of Emissivity

3. Determination of Heat transfer co-efficient through Forced Convection

4.Determination of Heat transfer co-efficient through Natural Convection

5.Determination of Heat transfer co-efficient of Pin-Fin Apparatus.

6.Determination of Stefan Boltzmann' s Constant

7.Determination of Thermal conductivity(Two Slabs Guarded Hot Plate Method)

8.Determination of Effectiveness of a Heat Exchanger By Parallel Flow

9. Determination of Effectiveness of a Heat Exchanger By Counter Flow

10.Determination of Thermal conductivity of the Composite wall

11.Determination of Thermal conductivity (Insulating Powder)

TEXT BOOKS

1. Heat Transfer lab Maual prepared by C.Thiagarajan,Mech/AVIT

Course Designers

S.No	Faculty Name	Designation	Department/ Name of the College	Email id
1	C.THIAGARAJAN	ASSISTANT PROFESSOR (GRADE-II)	Mechanical/AVIT	cthiagarajan@avit.ac.in

171	IECO		FI	NITE	ELE	MEN	Т	Ca	tegor	y	L	Т	Р	Cre	edit
T7N	AECC:	20	А	NAL	YSIS	LAB			CC		0	0	4	,	2
	m ble rovide	hands-o	on exp	erienc	e to t	he stu	dents	in fin	ite ele	ment	analysi	s softwa	are.		
Prer NIL	equisit	e													
Cou	rse Ob	jective													
1	Learn	basic p	roced	ure of	finite	elem	ent ar	nalysis	8						
2	Use c	ompute	r as a	tool ir	n anal	ysis									
3	Analy	sis of n	nodele	ed part	S										
4	Analy	sis of c	ne and	d two-	dimeı	nsiona	ıl prol	olems	using	softw	are				
5	To me	odel mu	ılti-dir	nensio	onal h	eat tra	nsfer	probl	ems u	sing A	NSYS				
Cou	rse Ou	tcomes	: On t	the su	ccess	ful co	mple	tion o	f the c	course	, stude	ents will	l be ab	le to	
CO1	-	ply the terials	basic	conce	pts to	stress	s and s	strain	proble	ems fo	r diffei	rent	U	ndersta	nd
CO2	. So	ve the	finite e	eleme	nt pro	blems	s to tru	isses,	beams	s and f	rames			Apply	
CO3	-	ply fini mbers a				d to fi	nd so	lution	s for v	various	s mach	ine		Apply	
CO4	. Ap	ply fini	te eler	nent r	netho	d to so	olve H	Ieat tr	ansfer	r probl	ems.			Apply	
CO5	. Sol	ve line	ar, nor	n-linea	ar and	Harn	nonic	analy	sis pro	blems				Apply	
Map	ping v	ith Pro	ogram	me O	utcor	nes a	nd Pr	ograr	nme S	Specif	ic Out	comes			
CO	РО	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
C01	S	L	L	L	L	L	-	-	-	-	-	L	L		
CO2	2 s	S	М	L	S	М	-	-	-	L	-	М	М		
CO3	3 S	S	S	s	S	М	-	-	М	L	-	L	S		
CO4	s s	S	S	М	S	М	-	-	М	L	-	L	S		
CO5	5 S	S	S	S	S	L	-	-	-	L	-	L	S		
S- Str	ong; M	Mediur	n; L-Lo	ow					<u> </u>				•		

- 1. Study of analysis and its benefits
- 2. Stress analysis of cantilever and simply supported beam
- 3. Application of distributed loads
- 4. Nonlinear analysis of cantilever beam
- 5. Buckling analysis
- 6. Stress analysis of axi-symmetry vessels
- 7. Static analysis of two dimensional truss
- 8. Transient thermal conduction
- 9. Conductive heat transfer analysis
- 10. Plane stress bracket
- 11. Modal analysis of simply supported beam

Professor

12. Harmonic analysis of a cantilever beam

Text Books 1 Finite Element Analysis lab Manual **Reference Books** Hutton, D.V., "Fundamentals of Finite Element Analysis", McGraw Hill, International 1 Edition, 2004. Chandrupatla, T.R., Belegundu, A.D., "Introduction to Finite Elements in Engineering", 2 Prentice Hall of India, 2002. **Course Designers Department/Name** Designation Email id S.No. **Faculty Name** of the College Assistant 1 K.Vijayakumar Mech / AVIT vijayakumar@avit.ac.in

17\/	ECC9		Ι	NDU	STRL	AL		Cate	egory	L		Т	Р	Cro	edit
1 / 101	IECC9.		AUT	OMA	TIO	N LAH	B	C	C	0		0	4	2	2
Prea To tra		studer	nts in I	hydra	ulic a	nd pne	umat	tic cire	cuit de	esign u	sing di	fferei	nt contro	l device	es
Prere	equisite	e NIL	1												
Cour	se Obj	ective	•												
1	Design	Hydı	raulic	and P	neum	atic ci	rcuits	s for lo	ow co	st auto	mation	l			
2	To unc	lerstar	nd the	work	ing of	logica	al cire	cuits							
3	To unc	lerstar	nd the	opera	tion o	of basic	c elec	etro pi	neuma	atic circ	cuits				
4	To des	ign op	oen lo	op and	d clos	ed looj	p con	trol c	ircuit	of AC	servo	motor	r		
5	Applic	ation	of PL	C to d	lesign	a syst	em.								
Cour	rse Out	come	s: On	the s	ucces	sful co	omple	etion	of the	cours	e, stud	lents	will be a	ble to	
CO1.		erstand	-	iples,	strateg	gies and	1 adva	antage	s of in	dustrial			Underst	and	
CO2.	Desi	gn ma			ng and	mater	rial s	torage	syste	ms for a	ın		Analyze	2	
CO3.	Devi	se auto	omated	l shop	floorc	ontrols	andpa	artiden	tificat	ionmeth	ods		Underst	and	
CO4.		ine the in Indu		'echno	logies	used in	n a m	anufac	cturing	plant a	nd thei	r	Underst	and	
CO5.	TT 1			basics	s of ve	ehicle o	collis	sion a	nd its	effects			Underst	and	
Map	ping w i	ith Pr	ograr	nme	Outco	omes a	nd P	rogra	mme	Specif	ic Ou	tcom	es		
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		PSO2	PSO3
CO1	S	S	M	L		M				9			L		
CO2	S	S	S	S	М	S				S			L		
CO3	S	M	L		-	L							L		
CO4	S	М	L		L	L							L		
CO5	S	S	М	L		М						L	L		
S- Str	ong; M-	Mediu	m; L-I	JOW											

1. To design a Speed control circuits for double acting cylinder.

2. To design a Synchronization circuit for two cylinders.

3. To design a Continuous reciprocation of double acting cylinder.

4. To design a Sequencing of two cylinder circuits.

5. To design a Cascading circuit for trapped signals-2 groups

6. Implementation of Logic Circuits: AND, OR

7. Design of Basic Electro Pneumatic Circuits: Continuous reciprocation of cylinder (with timer and counter)

8. Design and testing of Force, Velocity calculations in Hydraulic Linear actuation

9. Automatic bottle filling Machine

M.SARAVANAN

10. Design and simulation of PLC Control Pneumatic/ Hydraulic linear actuator circuits.

11. To design a Water Level Controller using PLC.

12. To design a PLC Controlled Material Handling System.

Text Books

1

INDUSTRIAL AUTOMATION LAB Manual 1 **Course Designers Department/Na** Email id S.No **Faculty Name** Designation me of the College MECH./ AVIT ASST. PROF saravanan@avit.ac.in

17N	1ECC	292	DYN	NAMI	ICS L	AB			Cat	tegory	L	Т	Р	Cı	redit
									(CC	0	0	4		2
	im of							•	-		ing vib litions.	oration m	neasure	ments	
Prero NIL	equisi	te													
Cour	se Ob	ojectiv	ve												
1	T o c pendu		ate the	e mass	s mon	nent o	f iner	tia and	d Rad	ius of g	gyratio	n of the	compo	und	
2			ne ex syste	-	entall	y the	mome	ent of	inerti	a of a r	rectang	ular bar	of a Bi	filar	
3	To d	eterm		perin	nental	ly the	mom	ent of	inerti	ia and 1	radius	of a circ	ular pla	ate Tri	filar
4		object			experi	iment	to det	ermir	e the	natura	l frequ	ency if a	spring	g mass	
5	The determ	object mine i		ntrolli		<u> </u>	<i>c</i>		•			charact the exp			
Cour	se Ou	itcom	es: O	n the	succe	essful	comp	oletion	n of tł	ne cou	rse, stı	idents w	vill be a	able to	•
CO1.			the m d pen			nt of i	nertia	of u	sing ,	bi-fila	r susp	ension T	rifilar	Suspei	nsion,
CO2.		-	he cri d coup		-				e give	n load	condit	ions and	the gy	roscop	oic
CO3.	Det	ermin	e the	chara	octeris	stic cu	rves o	of Wa	tt, Por	ter, Pr	oell an	d Hartne	ell gove	ernors.	
CO4.	То	Find	the N	atural	Frequ	uency	of Sp	oring l	Mass S	System	1.				
Map	ping v	vith F	Progra	amme	Out	comes	s and	Prog	ramn	ne Spe	cific O	utcomes	5		
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	L	L	-	-	-	-	L	-	-	-	L	-	-
CO2	S	М	L	L	-	-	-	-	L	-	-	-	L	-	-
CO3	S	L	L	L	-	-		-	L	-	-	-	L	-	-
CO4	S	L	L	L	-	-	-	-	L	-	-	-	L	-	-
S- Str	ong; M	I-Medi	ium; L	-Low											
SYL	LABU	JS													

1. Perform an Experiment on Watt and Porter Governor and to find the stability and sensitivity.

2. To Determine the controlling force and speed of a Proell Governor.

3. To Determine the position of sleeve against controlling force and speed of a Hartnell Governor.

4. Determination of Gyroscopic couple using Motorized Gyroscope.

5. Determination of critical speed of Whirling Shaft.

6. Determination of Natural Frequency of single degree of freedom system in a spring mass system.

7. Determination of Radius of Gyration- compound Pendulum

8. To Determine the moment of inertia by Trifilar and Bifilar Suspension.

Text Book

DYNAMICS Lab Manual

Course Designers

Cours	be Designer 5			
S.No	Faculty Name	Designation	Department/ Name of the College	Email id
1.	K.SURENDRABABU	ASSOCIATE Professor	Mechanical/AVIT	ksbtkm@gmail.com
2.	R.MAHESH	ASSOCIATE Professor	Mechanical/AVIT	maheshavit.ac.in

171	ЛЕСС	102	нуг	RAU	LICS	SANI)		0	atego	ry	L	Р	C	redit
1/1	IECC	.93					EM I	LAB		CC	(0 0	4		2
	gain k		dge al indus		ompo	nents	used i	in flu	id pov	ver sys	tem an	d fam	iliarize	various	
Prer	equisit	e – Nl	L												
Cour	se Ob	jectiv	e												
1	To in	npart p	ractice	in hy	draulic	e circu	it and j	pneun	natic ci	rcuit					
2	То	apply	the pr	ractica	l trair	ning b	y usin	ng trai	iner ki	t.					
3	To ap	ply th	e skills	s to de	sign a	circui	t for a	ny apj	plicatio	on					
Cour	se Ou	tcome	s: On	the su	ccessf	ul con	npletio	on of	the cou	ırse, st	udents	will b	e able t)	
CO1.	U	ndergo	o pract	tical s	kill tr	aining	g in hy	drau	lic sys	tem			App	ply	
CO2.	U	ndergo	o pract	tical s	kill tr	aining	g in pn	ieuma	atic sy	stem			Apj	ply	
CO3.		ain the tomat		owled	lge sk	xill pra	actice	in de	signin	g circu	iits for		Apj	ply	
Map	ping w	vith P1	ogran	nme O	utcon	nes an	d Prog	gram	me Sp	ecific (Outcom	es			
СО	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3
CO1	S	S	S	М	М	L	Μ	-	M			L	L		
CO2	S	S	S	М	М	L	М	-	М			L	L	1	
CO3	S	S	M	М	L	М	L	-	М			М	L		
S- St	rong;	M-Me	dium;	L-Lo	W										
	LABU C OF F		RIME	NTS:											
2. Str 3. Str 4. Str 5. Str 6. Str 7. De	udy of udy of udy of udy of udy of esign a	E Sequ E Sync E Rege E Cour E ISO/ and as	GIS F sembl	g Circ zing C ve Cin ancin luid P y of h	uit on fircuit rcuit o g Ciro ower ydrau	Hydi on H on Hy cuit or Symb llic / p	raulic ydrau drauli n Hyd ools oneum	Train lic Tr c Tra raulic atic c	ier ainer iner Train						

Text Bo	ook									
HYDR	IYDRAULICS AND PNEUMATIC SYSTEM LAB Manual									
Course	Designers									
~ ~ ~			Departmen							
S.No	Faculty Name	Designation	t/ College	Email id						
1	M.SARAVANAN	Assistant Professor	Mech / VMKVEC	rajat@vmkvec.edu.in						

			1.7.4.1		CTU	DINI	r		0	atego	ry	L		Р	Cı	edit
17MI	ECC9	94				RIN(G LA				CC	()	0	4		2
Prea r To i		t pract	tice in	opera	ation (of spe	cial m	nachir	es like	e turnii	ng, mil	ling	sha	aping a	nd grin	ding.
Prere	quisit	e – NI	L													
Cours	se Obj	jective	9													
1	To impart practice in lathe operations															
2	To apply the practical training by using drilling machine, shaping machine operations															
3	To apply the practical training by using milling, planning and grinding machines															
Cours	se Out	tcome	s: On	the su	ccessf	ul con	npleti	on of	the cou	ırse, st	udents	will	be	able to		
CO1.	n	Inderg nachin eratio	ing	ctical	skill t	rainin	g in la	athe r	nachir	ne and	various	s La	the	App	ly	
CO2.	Ur		o prac	tical s	kill tr	aining	g in dr	illing	mach	ine, sh	aping			App	ly	
CO3.		in the achine		nowled	lge sl	kill pra	actice	in pla	anning	g and g	rinding	5		App	ly	
Mapp	oing w	ith Pr	ogran	nme O	utcon	nes an	d Pro	gram	me Sp	ecific C	Outcom	es				
CO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PC 2		PSO 1	PSO 2	PSO 3
CO1	S	S	M		L	M	L	-	M	M				L		
CO2	S	S	M	М	L	М	L	-	М	М				L		
CO3	S	S	M	М	L	M	L	-	М	М				L		
S- Str	ong; I	M-Me	dium;	L-Lo	W	<u> </u>			<u> </u>							
SYLI	LABU	S:														
LIST	OF E	XPEF	RIME	NTS:												
				g and	-	urning	g on la	athe.								

- Plain turning and step tu
 Taper turning on lathe.
 Thread cutting on lathe.
- 4. Drilling, reaming and tapping in a drilling machine.
- 5. Plain milling.

- 6. Making square shape job in shaping machine.
 7. Making Cutting key ways in a slotting machine.
 8. To Perform Grinding process using a grinding machine

Text Bo	Text Book											
MANU	MANUFACTURING ENGINEERING LAB Manual											
Course Designers												
			Departmen									
S.No	Faculty Name	Designation	t/	Email id								
			College									
1	T.Raja	ASSITANT	AUTO/VM	rajat@vmkvec.edu.in								
		PROFESSOR	KVEC									
2	R.Prabhakar	ASSITANT	AUTO/VM	rprabhakar@vmkvec.edu.in								
		PROFESSOR	KVEC	_								

ELECTIVE COURSES SPECIALIZATION – AERONAUTICAL ENGINEERING

17ARSE43	AERODYNAMICS	Category	L	Т	Р	Credit
I/AKSE45	AERODINAMICS	EC-SPL	3	0	0	3

This subject provides a detailed description of the methodology and the behaviour of airflow both internal and external in compressible flow regime with particular emphasis on supersonic flows. It will provide students an indepth knowledge of the compressible flow and also about the shock waves. With this knowledge the students can also apply the experimental techniques for high speed flows.

Course Objectives

1.	To understand the fluid mechanics concepts for advanced applications
2.	To study two dimensional flows in aerodynamics
3.	To study ideal flows over wings
4.	To Study the high speed flows over airfoils, wings and airplane configurations
5.	To Study the boundary layer interaction

Course Outcomes

In the successful completion of the course, students will be able to

CO1.	Gather the knowledge of fundamental principles of fluid mechanics.	Remember
CO2.	Use the concepts of two dimensional flows in aerodynamics.	Understand
CO3.	Implement the concept and compute relevant results for ideal flow over wings.	Apply
CO4.	Compute the results for high speed flows over airfoils and wings by applying various	Apply
	methods	
CO5.	Implement the performance of experimental techniques for high speed flows	Analyze
	analysis	

Mapping with Programme Outcomes and Programme Specific Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1.	L	L	-	-	-	-	-	-	-	-	-	L	L	L	L
CO2.	Μ	Μ	Μ	L	-	-	-	-	-	-	-	-	L	L	L
CO3.	Μ	S	S	Μ	Μ	-	-	-	-	-	-	-	М	Μ	S
CO4.	S	Μ	S	S	S	-	-	-	-	-	-	L	S	S	S
CO5.	М	S	S	S	S	-	-	-	L		-	М	S	S	S

S- Strong; M-Medium; L-Low

Syllabus

UNIT – I INTRODUCTION TO LOW SPEED FLOW

Euler equation, incompressible Bernoulli's equation. circulation and vorticity, Green's Lemma and Stoke's theorem, Barotropic flow, Kelvin's theorem, Reynolds number, streamline, stream function, irrotational flow, potential function, Equi-potential lines, elementary flows and their combinations

UNIT – II TWO DIMENSIONAL INVISCID INCOMPRESSIBLE FLOW

Ideal Flow over a circular cylinder, D'Alembert's paradox, Magnus effect, Kutta-Joukowski's theorem, starting vortex, Kutta condition, real flow over smooth and rough cylinder

UNIT – III SUBSONIC WING THEORY

Vortex filament, Biot and Savart law, bound vortex and trailing vortex, horse shoe vortex, lifting line theory and its limitations, various types of wings and its applications

HIGH SPEED FLOW OVER AIRFOILS, WINGS AND AIRPLANEUNIT – IVCONFIGURATION

9

9

Q

9

Critical Mach number, Drag divergence Mach number, Shock Stall, Supercritical Airfoil Sections, Transonic area rule, Swept wing, Airfoils for supersonic flows, Lift, drag, Pitching moment and Centre of pressure for supersonic profiles, Shock-expansion theory, wave drag, supersonic wings, Design considerations for supersonic aircraft- aerodynamic heating.

UNIT – V EXPERIMENTAL TECHNIQUES FOR HIGH SPEED FLOWS

Wind tunnels for transonic, Supersonic and hypersonic flows, shock tube, Gun tunnels-peculiar problems in the operation of hypersonic tunnels - Supersonic flow visualization methods

TEXT BOOK:

- 1. Anderson, J. D, Modern Compressible Flow, McGraw-Hill & Co., 2002.
- 2. Rathakrishnan., E, Gas Dynamics, Prentice Hall of India, 2004.

REFERENCES:

- Shapiro, A. H., Dynamics and Thermodynamics of Compressible Fluid Flow, Ronald Press, 1982.
 Zucrow, M. J. and Anderson, J. D., Elements of Gas Dynamics, McGraw- Hill & Co., 1989.
- 3. Oosthuizen, P.H., & Carscallen, W.E., Compressible Fluid Flow, McGraw-Hill & Co., 1997.

S.No	Name of the Faculty	Mail ID
1	Senthilkumar M	senthil@vmkvec.edu.in
2	Gowri Shankar R	gowrishankar@vmkvec.edu.in
3	Sanjay Singh	sanjay@vmkvec.edu.in

		Category	L	Т	Р	Credit	
17ARSE44	AEROSPACE PROPULSION	CORE	3	0	0	3	

This course provides knowledge and creates a base for the students to develop a strong concept of propulsive device used in aerospace propulsion.

Course Objectives

1	To understand the basic concepts of propulsion.
2	To provide an in-depth study of propulsion subject.
3	To develop analytical skills for selection of propulsive method.
4	To develop criticizing skills for modification and designing of components.
5	To develop entrepreneurial skills.

Course Outcomes

In the successful completion of the course, students will be able to

CO1.	Define principles of operation and identification of components of an engine.	Remember
CO2.	Explain working of internal combustion engines.	Understand
CO3.	Employ analytical skills for trouble shooting.	Apply
CO4.	Categorise the propulsive devices and estimate reliability.	Analyze
CO5.	Evaluate and modify the system.	Evaluate
CO6.	Formulate and design a new modified aero engine	Create

Mapping with Programme Outcomes and Programme Specific Outcomes

	0			1			0			1		1		1	1
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1.	L	L	L	L	-	-	-	-	-	-	-	-	L	L	L
CO2.	L	L	L	L	-	-	-	-	-	-	-	-	L	L	L
CO3.	S	S	S	S	-	-	-	-	-	-	-	-	Μ	Μ	Μ
CO4.	S	S	S	S	-	-	-	-	-	-	-	-	S	S	S
CO5.	S	S	S	S	-	-	-	-	-	-	-	-	S	S	S
CO6.	S	S	S	S	-	-	-	-	-	-	-	-	S	S	S

S- Strong; M-Medium; L-Low

Syllabus FUNDAMENTALS OF ENGINES 7 UNIT I History and classifications of Aero engines, Working of gas turbine engine - Thrust equation - Efficiency, Specific fuel consumption, Methods of thrust augmentation – Characteristics of propeller, turboprop, turbofan and turbojet engines. UNIT II INLETS AND NOZZLES 7 Subsonic inlets- External and internal flow pattern - inlet performance criterion -Boundary layer separation - Supersonic inlets-Theory of flow in isentropic nozzles - Losses in nozzles -- Interaction of nozzle flow with adjacent surfaces - Thrust reversal UNIT III COMPRESSORS, TURBINES AND COMBUSTION CHAMBERS 12 Principle of operation of centrifugal compressor – Work done and pressure rise – Elementary theory of axial flow compressor - Elementary theory of axial flow turbine- blade cooling - Classification of combustion chambers - Important factors affecting combustion chamber design - Combustion process UNIT IV | ROCKETS – SOLID, LIQUID AND HYBRID 12 Selection criteria of solid propellants - propellant grain design considerations - Progressive, Regressive and neutral burning in solid rockets, Liquid propellant rockets – selection of liquid propellants – various feed systems for liquid rockets -cryogenic techniques - Thrust vector control - Cooling in liquid rockets advantages of liquid rockets over solid rockets - introduction to hybrid propulsion - advantages and limitations of hybrid propulsion UNIT V ADVANCED PROPULSION TECHNIQUES 7 Electric rocket propulsion - Plasma as a fluid- Diffusion in Partially Ionized gases - Ion propulsion - Nuclear rocket, Solar Sail

TEXT BOOK:

1. Hill, P.G. & Peterson, C.R, Mechanics & Thermodynamics of Propulsion, Addison – Wesley Longman INC, 1999.

2. Sutton, G.P., "Rocket Propulsion Elements", John Wiley & Sons Inc., New York, 8th Edition, 2010.

REFERENCES:

1. Ahmed F. El-Sayed, Aircraft Propulsion and Gas turbine engines, CRS Press, 2008

2. SaeedFarokhi, Aircraft Propulsion, John Wiley & Sons, Inc., 2009

3. J D Mattingly, "Elements of Propulsion - Gas Turbines and Rockets", AIAA Education Series, 2006.

4. Dan M.Goebel, Ira Katz, 'Fundamentals of Electric Propulsion', John Wiley & Sons Inc, New York, 2003.

S.No	Name of the Faculty	Mail ID
1	Senthilkumar M	senthil@vmkvec.edu.in
2	R.Gowri Shankar	gowrishankar@vmkvec.edu.in
3	Sanjay Singh	sanjay@vmkvec.edu.in

17ARSE45	AIRCRAFT STRUCTURES	Category	L	Т	Р	Credit
		EC - SPL	3	0	0	3

This subject provides knowledge on the aircrafts basic structural load and the behaviours of the structure under loading condition. It will also provide the detailed study on the failure theory which provides the student a deep knowledge on designing a safe structure.

Course Objectives

Cours															
1.										ural me					
2.	-	To provide the students an understanding on the static analysis of determinate and indeterminate								ate					
		structure.													
3.		inderst				0.									
4.		11 2		0				0	0	erent fa	ilure the	eories.			
5.		inalyse	the va	arious	industi	rial and	d therr	nal stre	esses.						
	e Outc			0.1											
	success									1 1	1'		T	1	
<u>201.</u> 202.										under l				lemembe Inderstar	
CO2.		ulate th						erateu	to open	section	•			Inderstar	
CO4.								es and t	he defo	ormation	ofit			Apply	iu
CO5.		te the v								mation	01 11.			Analyse	
					-				cific O	utcome	s		1	maryse	
COs	PO1	PO2	PO3	PO4	PO5		PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1.	S	L	S	-	-	М	L	-	-	-	-	S	L	S	L
CO2.	S	S	М	М	-	-	-	-	-	-	-	-	М	L	-
CO3.	S	S	Μ	L	-	L	-	-	L	-	-	L	L	-	-
CO4.	S	М	М	S	М	-	-	-	-	-	-	-	S	S	S
CO5.	S	S	S	Μ	-	-	-	-	-		-	М	S	S	S
	ong; M-	Mediu	m; L-L	ow											
Syllab	ous														
UN	IT – I	ST	ATICA	ALLY	DETE	RMIN	ATE&	INDE	TERM	IINATE	STRU	CTURES	5		9
Plane	truss a	nalysis	- met	hod of	joints	– meth	od of	section	s – me	thod of	shear -	3-D trus	ses –pri	nciple of	super
positic	on, Clap	eyron'	s 3 mo	ment ec	quation	and m	oment	distribı	ution m	ethod fo	r indeter	rminate b	eams.		
UNI	IT – II	ST	RESS	ANAL	YSIS (OF WI	NG AN	ND FUS	SELAC	GΕ					10
oads	on an a	ircraft	–V-n d	iagram	– shea	r force	and be	nding 1	nomen	t distribi	ition ove	er theairc	raft wing	and fuse	elage –
												nsion fiel			
	eam the				1			1	L.	·	1				
UNI	T – III		DLUM	NS											10
					buck	ling _	effect	of init	tial cu	vature	_ the S	outh wel	1 nlot -	column	s with
												with dif			
	es in be			, mea	1045	uncory	01 000			ocum (orunnis	with an		u conun	.10115
	T – IV	1	SYM	AETRI	ICAL I	BEND	ING								9
								s _ her	nding 4	traces	in hear	ns of un	summetr	ical sect	
	lized 'I										in Deall	is of ull	symmett	ical sect	10115 -
-	$\mathbf{T} - \mathbf{V}$						- prine	Pur um	- moun						7
	1 - v						roop	Strong L	Dalavat	ion					1
			iipact i	oaung	- Falls	gue – C	ieep	suess r	Nelaxa	1011.					
	BOO														
										ill, 1993		1	1 00	07	
	gson T ry and A					or Engin	neering	studen	its" Els	evier Sc	ience an	d Techno	ology, 20	07	
		a zar "	Aircrat	1 MILLO	ures										

REFERENCES:

- 1. Donaldson, B.K., "Analysis of Aircraft Structures An Introduction", McGraw Hill, 1993.
- 2. Bruhn E F, "Analysis and Design of Flight Vehicle Structures", Tri-State Off-set Company, USA,1985
- 3. Peery, D.J. and Azar, J.J., "Aircraft Structures", 2nd Edition, McGraw Hill, N.Y, 1999.

S.No	Name of the Faculty	Mail ID
1	Gowri Shankar R	gowrishankar@vmkvec.edu.in
2	Senthilkumar M	senthil@vmkvec.edu.in
3	Sanjay Singh	sanjay@vmkvec.edu.in

	AIRCRAFT PERFORMANCE	Category	L	Т	Р	Credit
17ARCC09	STABILITY AND CONTROL	EC - SPL	3	0	0	3

This course will provide the student a strong knowledge on the Aircrafts various stability criteria's along the different axis and the controls involved in it and also the various flight performance in different flying conditions.

Course Objectives

1	To understand the various performance of flight during cruising condition
2	To understand the various maneuvering of flight
3	To provide an in-depth study of longitudinal static stability and its control.
4	To provide an in-depth study of directional and lateral static stability
5	To identify the Stability derivatives for dynamic stability.
0	

Course Outcomes

In the successful completion of the course, students will be able to

CO1.	Relate the various performance flights according to the maneuvers.	Remember
CO2.	Explain various flight maneuvers properly.	Understand
CO3.	Demonstrate the stability criteria's along the longitudinal axis of flight.	Apply
CO4.	Demonstrate the stability criteria's along the directional and lateral axis.	Apply
CO5.	Identify varies stability derivative problems.	Analyze

Mapping with Programme Outcomes and Programme Specific Outcomes

	0		0				0								
Cos	PO	PO2	PO	PO1	PO1	PO1	PSO	PSO	PSO						
	1		3	4	5	6	7	8	9	0	1	2	1	2	3
CO1	М	L	М	S	-	-	-	-	-	-	-	-	-S	L	L
CO2	L	Μ	L	L	-	-	-	-	-	-	-	-	L	Μ	S
CO3	S	Μ	S	S	-	-	-	-	-	-	-	-	Μ	Μ	S
CO4	S	Μ	S	S	-	-	-	-	-	-	-	-	Μ	S	Μ
CO5	S	S	М	М	-	-	-	-	-	-	-	-	Μ	S	Μ

S- Strong; M-Medium; L-Low

Syllabus

UNIT – I CRUISING FLIGHT PERFORMANCE

International Standard Atmosphere - Forces and moments acting on a flight vehicle - Equation of motionof a rigid flight vehicle - Different types of drag –estimation of parasite drag co-efficient by proper areamethod- Drag polar of vehicles from low speed to high speeds - Variation of thrust, power with velocityand altitudes for air breathing engines . Performance of airplane in level flight - Power available andpower required curves. Maximum speed in level flight - Conditions for minimum drag and power requiredUNIT – IIMANOEUVERING FLIGHT PERFORMANCE11

Range and endurance - Climbing and gliding flight (Maximum rate of climb and steepest angle of climb, minimum rate of sink and shallowest angle of glide) -Turning performance (Turning rate turn radius). Bank angle and load factor – limitations on turn - V-n diagram and load factor.

UNIT – III STATIC LONGITUDINAL STABILITY

Degree of freedom of rigid bodies in space - Static and dynamic stability - Purpose of controls in airplanes -Inherently stable and marginal stable airplanes – Static, Longitudinal stability - Stick fixed stability -Basic equilibrium equation - Stability criterion - Effects of fuselage and nacelle - Influence of CG location - Power effects - Stick fixed neutral point -Stick free stability-Hinge moment coefficient - Stick free neutral points-Symmetric maneuvers - Stick force gradients - Stick _ force per 'g' - Aerodynamic Balancing.

UNIT – IV | LATERAL AND DIRECTIONAL STABILITY

Dihedral effect - Lateral control - Coupling between rolling and yawing moments – Adverse yaw effects - Aileron reversal - Static directional stability - Weather cocking effect – Rudder requirements - One engine inoperative condition - Rudder lock.

8

10

10

UNIT – V DYNAMIC STABILITY

Dutch roll and spiral instability, Auto rotation and spin, Stability derivatives for lateral and directional dynamics.

TEXT BOOKS:

- 1. Perkins, C.D., and Hage, R.E., "Airplane Performance stability and Control", John Wiley & Son:, Inc, NY, 1988.
- 2. Nelson, R.C. "Flight Stability and Automatic Control", McGraw-Hill Book Co., 2004.
- 3. McCornick. W., "Aerodynamics, Aeronautics and Flight Mechanics", John Wiley, NY, 1979.

REFERENCES:

- 1. Etkin, B., "Dynamics of Flight Stability and Control", Edn. 2, John Wiley, NY, 1982.
- 2. Babister, A.W., "Aircraft Dynamic Stability and Response", Pergamon Press, Oxford, 1980.
- 3. Dommasch, D.O., Sherby, S.S., and Connolly, T.F., "Aeroplane Aero dynamics", Third Edition, Issac Pitman, London, 1981.
- 4. McCornick B. W, "Aerodynamics, Aeronautics and Flight Mechanics", John Wiley, NY, 1995.

Course Designers:

S.No	Name of the Faculty	Mail ID
1	R.Gowri Shankar	gowrishankar@vmkvec.edu.in
2	Senthilkumar M	senthil@vmkvec.edu.in
3	Sanjay Singh	sanjay@vmkvec.edu.in

6

17ARCC10	AIRCRAFT MATERIALS AND	Category	L	Т	Р	Credit
I/AKUUI	PROCESSES	CC	3	0	0	3

This course provides basic knowledge in aircraft materials and its process.

Prerequisite

NIL

Course Objectives

1. To understand the structure of solid materials, crystal structures and physical metallurgy.
2. To understand the various deformation mechanisms, failure modes and phase diagram
3. To learn the various types of heat treatment methodologies and study of corrosion behaviour of materials.
4. To know the various types of engineering materials, properties and applications.
5. To learn about the exposure to high temperature materials for space applications

Course Outcomes

On the successful completion of the course, students will be able to

CO1. To know the elements of aerospace materials like crystallography.	Understand
CO2. To analyse the behaviour of materials using mechanical testing methods to know the	Apply
properties of materials.	
CO3. Identify heat treatment methods and surface treatments to improve mechanical	Apply
properties of materials for applications in engineering industries. To make an analysis of the	
formation and effects of corrosion on various materials and to make an analysis of the	
formation and effects of corrosion on various materials.	
CO4. Identify materials for industrial applications based on microstructure and mechanical	Analyze
property relationship	
CO5. To study and analyze the different types of high temperature materials for space	Analyze
applications	

Mapping with Programme Outcomes and Programme Specific Outcomes

		0						0								
С	Os	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
	CO	S	L	-	-	-	-	-	-	-	-	-	-	L		
	CO	Μ	S	Μ	L	-	-	-	-	-	-	-	-	L		
	CO	S	Μ	L	Μ	-	-	-	-	-	-	-	-	L		
	CO	S	S	L	S	-	-	-	-	-		-	-	L		
	CO	L	S	Μ	S	-	-	-	-	-		-	-	L		
~	2															

S- Strong; M-Medium; L-Low

.SYLLABUS

ELEMENTS OF AEROSPACE MATERIALS

Structure of solid materials – Atomic structure of materials – crystal structure – miller indices – density – packing factor – space lattices – x-ray diffraction – imperfection in crystals – physical metallurgy - general requirements of materials for aerospace applications.

MECHANICAL BEHAVIOUR OF MATERIALS

Linear and non linear elastic properties – Yielding, strain hardening, fracture, Bauchinger's effect –Notch effect testing and flaw detection of materials and components – creep and fatigue -comparative study of metals, ceramics plastics and composites.

CORROSION & HEAT TREATMENT OF METALS AND ALLOYS

Types of corrosion – effect of corrosion on mechanical properties – stress corrosion cracking –corrosion resistance materials used for space vehicles heat treatment of carbon steels – aluminium alloys, magnesium alloys and titanium alloys – effect of alloying treatment, heat resistance alloys –tool and die steels, magnetic alloys,

CERAMICS AND COMPOSITES

Introduction – powder metallurgy - modern ceramic materials – cermets - cutting tools – glass ceramic – production of semi fabricated forms - plastics and rubber – carbon/carbon composites, fabrication processes involved in metal matrix composites - shape memory alloys – applications in aerospace vehicle design, open and close mould processes.

HIGH TEMPERATURE MATERIALS CHARACTERIZATION

Classification, production and characteristics – methods and testing – determination of mechanical and thermal properties of materials at elevated temperatures – application of these materials in thermal protection systems of aerospace vehicles – super alloys – high temperature material characterization.

Text Books

1. Tifferton.G., "Aircraft Materials and Processes", V Edition, Pitman Publishing Co., 1995.

Reference Books

1. Martin, J.W., "Engineering Materials, Their properties and Applications", Wykedham Publications (London) Ltd., 1987.

2. VanVlack.L.H., "Materials Science for Engineers", Addison Wesley, 1985.3.

3. Raghavan.V., "Materials Science and Engineering", Prentice Hall of India, New Delhi, 1993.

S.No	Faculty Name	Designation	Email id
1	Senthilkumar M	Assistant Professor	senthil@vmkvec.edu.in
2	R.Gowri Shankar	Assistant Professor	gowrishankar@vmkvec.edu.in
3	Sanjay Singh	Associate Professor	sanjay@vmkvec.edu.in
4	S. Arunkumar	Associate Professor	sarunkumar@vmkvec.edu.in
5	J. Rabi	Associate Professor	rabi@vmkvec.edu.in

	AIRCRAFT GENERAL	Category	L	Т	Р	Credit
17ARSE34	ENGINEERING AND	EC - SPL	2	0	0	2
	MAINTENANCE PRACTICES		3	0	0	3

This course will provide the student a strong knowledge on the Aircrafts basic and regular maintenance to be followed to have a smooth and safety fly.

Course Objectives

1	To remember the various maintenance practices involved in aircraft.
2	To understand the various procedures to be followed during maintenance.
3	To provide an in-depth study of the safety precautions to be followed.
4	To identify the various special problems involved in the aircraft through inspection.
5	To fully equipped with the knowledge of the flight maintenance in all the aspects.

Course Outcomes

In the successful completion of the course, students will be able to

CO1.	Recall the various maintenance practices involved in aircraft.	Remember
CO2.	Demonstrate the various procedures to be followed during maintenance.	Understand
CO3.	Generalize the various primary safety precautions to be followed.	Apply
CO4.	Calculate the various special problems involved in the aircraft.	Apply
CO5.	Categorize the various flight maintenance procedures in all the aspects.	Analyze

Mapping with Programme Outcomes and Programme Specific Outcomes

11	0		0				0								
Cos	PO	PO2	PO	PO1	PO1	PO1	PSO	PSO	PSO						
	1		3	4	5	6	7	8	9	0	1	2	1	2	3
CO1	М	L	Μ	S	-	-	-	-	-	-	-	-	S	L	L
CO2	L	Μ	L	L	-	-	-	-	-	-	-	-	L	Μ	S
CO3	S	Μ	S	S	-	-	-	-	-	-	-	-	Μ	Μ	S
CO4	S	Μ	S	S	-	-	-	-	-	-	-	-	Μ	S	М
CO5	S	S	Μ	М	-	-	-	-	-	-	-	-	Μ	S	М

S- Strong; M-Medium; L-Low

Syllabus

	Synabus									
	UNIT – I AIRCRAFT GROUND HANDLING AND SUPPORT EQUIPMENT									
	Mooring, jacking, leveling and towing operations – Preparation – Equipment – precautions – Engine									
	Starting proc	edures - Piston engine, turboprops and turbojets - Engine fire extinguishing - Grou	ndpower							
	unit.									
UNIT – II GROUND SERVICING OF VARIOUS SUB SYSTEMS										

UNIT – II GROUND SERVICING OF VARIOUS SUB SYSTEMS

Air conditioning and pressurization – Oxygen and oil systems – Ground units and their maintenance.

UNIT – III | MAINTENANCE OF SAFETY

Shop safety - Environmental cleanliness - Precautions

UNIT – IV INSPECTION

Process - Purpose - Types - Inspection intervals - Techniques - Checklist - Special inspection -Publications, bulletins, various manuals - FAR Air worthiness directives - Type certificate Data sheets – ATA Specifications

5

10

12

UNIT – V | AIRCRAFT HARDWARE, MATERIALS, SYSTEM PROCESSES Hand tools - Precision instruments - Special tools and equipments in an airplane maintenance shop-Identifiation terminology - Specification and correct use of various aircraft hardware (i.e. nuts, bolts, rivets, screws etc) – American and British systems of specifications – Threads, gears, bearings, etc –

Drills, tapes and reamers – Identification of all types of fluid line fittings. Materials, metallic and non metallic Plumbing connectors – Cables – Swaging procedures, tests, Advantages of swaging oversplicing.

TEXT BOOKS:

1. Kroes Watkins Delp, "Aircraft Maintenance and Repair", McGraw Hill, New York, 1993

REFERENCES:

- A&P Mechanics, "Aircraft Hand Book", FAA Himalayan Book House, New Delhi, 1996
 A&P Mechanics," General Hand Book", FAA Himalayan Bok House, New Delhi, 1996

S.No	Name of the Faculty	Mail ID
1	R. Gowri Shankar	gowrishankar@vmkvec.edu.in
2	M. Senthilkumar	senthil@vmkvec.edu.in
3	Sanjay Singh	sanjay@vmkvec.edu.in

17ARSE41	AIRCRAFT STRUCTURE LAB	Category	L	Т	Р	Credit
17AKSE41	AIRCRAFT STRUCTURE LAD	LAB - SPL	0	0	4	2

The aim of the subject is to provide a practical knowledge in aircraft structure.

Course Objectives

1	To know how to find the Young's modulus of various materials.
2	To know about the fracture patterns for various materials.
3	To know about the behaviours of beam when it is subjected to various end condition.
4	To know about the loads similarity with respect to distance
5	To know which type of joint should be made to have a strong structure.

Course Outcomes

In the successful completion of the course, students will be able to

CO1.	Remember the various materials to be used for various loads.	Remember
CO2.	Understand about the various fracture patterns for various materials.	Understand
CO3.	Apply the knowledge on behaviours of beam with various end condition.	Apply
CO4.	Apply the Maxwell's Reciprocal theorem & principle of superposition on various	Apply
	beam condition.	
CO5.	Analyze the character sticks of various material with various loading condition.	Analyze

Mapping with Programme Outcomes and Programme Specific Outcomes

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	L	L	L	L	-	-	-	-	-	-	-	-	L	L	L
CO2	L	L	L	L	-	-	-	-	-	-	-	-	L	L	L
CO3	S	S	S	S	-	-	-	-	-	-	-	М	М	Μ	М
CO4	S	S	S	S	-	-	-	-	-	-	-	S	S	S	S
CO5	S	S	S	S	-	-	-	-	-	-	-	S	S	S	S
0 0		3 6 1	T T												

S- Strong; M-Medium; L-Low

LIST OF EXPERIMENTS:

1. Determination of Young's modulus of steel using mechanical extensometers.

- 2. Shear centre location for closed sections
- 3. Determination of fracture strength and fracture pattern of ductile materials.
- 4. Determination of fracture strength and fracture pattern of brittle materials.
- 5. Stress Strain curve for various engineering materials.
- 6. Flexibility matrix for cantilever beam
- 7. Verification of Maxwell's Reciprocal theorem & principle of superposition.
- 8. Column Testing.
- 9. Unsymmetrical bending of beams
- 10. Riveted Joints.

REFERENCE:

Aircraft Structure Lab Manual.

S.No	Name of the Faculty	Mail ID
1	R.Gowri Shankar	gowrishankar@vmkvec.edu.in
2	Senthilkumar M	senthil@vmkvec.edu.in

3	Sanjay Singh	sanjay@vmkvec.edu.in							
		Category	L	Т	Р	Credit			
17ARSE42	AERO ENGINE LAB	CORE	0	0	4	2			

This course provides sufficient knowledge and creates a base for the students to develop concepts of working independently in aero engines.

Course Objectives

1	To understand the basic concepts of aero engines used in small and large aircrafts.
2	To provide practical knowledge on working of components of aero engines.
3	To develop analytical skills for trouble shooting.
4	To develop confidence in working independently on an aircraft engine.
5	To develop personality and an attitude of team work.

Course Outcomes

In the successful completion of the course, students will be able to

CO1.	Define principles of operation and identify components.	Remember
CO2.	Explain working of internal combustion engines.	Understand
CO3.	Employ analytical skills in finding faults and mal-functioning in operation.	Apply
CO4.	Categorise the troubles and pin point the technical malfunction.	Analyze
CO5.	Evaluate and modify the system to meet certain requirement.	Evaluate
CO6.	Formulate and design a new concept for a better output.	Create

Mapping with Programme Outcomes and Programme Specific Outcomes

	0	U					0								
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1.	L	L	L	L	-	-	-	-	-	-	-	-	L	L	L
CO2.	L	L	L	L	-	-	-	-	-	-	-	-	L	L	L
CO3.	S	S	S	S	-	-	-	-	-	-	-	-	Μ	Μ	Μ
CO4.	S	S	S	S	-	-	-	-	-	-	-	-	S	S	S
CO5.	S	S	S	S	-	-	-	-	-	-	-	-	S	S	S
CO6.	S	S	S	S	-	-	-	-	-	-	-	-	S	S	S

S- Strong; M-Medium; L-Low

LIST OF EXPERIMENTS

1.	Identification of older and newer versions of piston engines and their components.					
2.	Maintenance aspect – Cleaning, Visual Inspection and Dimensional checks.					
3.	Crankshaft and its parts – dimensional checks and deformation analysis					
4.	Fuel and oil systems - maintenance and trouble shooting.					
5.	Reassembly of dismantled components.					
6.	Identification of older and newer versions of jet engine and their components.					
7.	Maintenance aspect – Cleaning, Visual Inspection and Dimensional checks.					
8.	Non Destructive Testing of components.					
9.	Study of Ignition System of jet engine.					
10.	Jet Engine –Reassembly of dismantled components.					
REFEREN	REFERENCES:					

AERO ENGINE LAB MANUAL

S.No	Name of the Faculty	Mail ID
1	Senthilkumar M	senthil@vmkvec.edu.in
2	R.Gowri Shankar	gowrishankar@vmkvec.edu.in
3	Sanjay Singh	sanjay@vmkvec.edu.in

17ARCC84	AERODYNAMICS LABORATORY	Category	L	Т	Р	Credit	
ITARCC04	AEROD INAMICS LABORATORY	LAB-SPL	0	0	4	2	

The aim of the subject is to provide knowledge in wind tunnel testing

Course Objectives

Course	Objectives					
1	To study experimentally the aerodynamic forces on different bodies at low speeds					
2	To familiarize with the Calibration of a subsonic Wind tunnel					
3	To familiarize with Pressure distribution over a smooth circular cylinder					
4	To familiarize with the Pressure distribution over a symmetric aerofoil					
5	To familiarize with the Flow visualization studies in subsonic flows					

Course Outcomes

In the successful completion of the course, students will be able to

CO1.	Collect the knowledge of various flow equations.	Remember
CO2.	Implement the working concepts of various wind tunnel.	Understand
CO3.	Utilize the knowledge and compute the results for Pressure distribution over a smooth circular cylinder.	Apply
CO4.	Implement the concept and compute relevant results for Pressure distribution over a symmetric aerofoil	Apply
CO5.	Compute the performance of Flow visualization studies in subsonic flows.	Analyze

Mapping with Programme Outcomes and Programme Specific Outcomes

- mapp	The pring with 110gramme outcomes and 110gramme opecific outcomes														
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1.	L	-	-	-	-	-	-	-	-	-	-	-	L	L	L
CO2.	Μ	L	Μ	-	-	-	-	-	-	-	-	-	L	L	L
CO3.	S	S	S	S	-	-	-	-	-	-	-	-	М	Μ	Μ
CO4.	Μ	S	-	-	-	-	-	-	-	-	-	-	М	Μ	Μ
CO5.	S	S	S	-	-	-	-	-	-		-	S	S	S	S
0 0	3.4	3 6 1'	тт												

S- Strong; M-Medium; L-Low

LIST OF EXPERIMENTS:

- 1. Application of Bernoulli's Equation venture meter and orifice meter.
- 2. Frictional loss in laminar flow through pipes.
- 3. Frictional loss in turbulent flow through pipes.
- 4. Calibration of a subsonic Wind tunnel.
- 5. Determination of lift for the given airfoil section.
- 6. Pressure distribution over a smooth circular cylinder.
- 7. Pressure distribution over a rough circular cylinder.
- 8. Pressure distribution over a symmetric aerofoil.
- 9. Pressure distribution over a cambered aerofoil.
- 10. Flow visualization studies in subsonic flows.

REFERENCE:

Aerodynamics Lab Manual

S.No	Name of the Faculty	Mail ID
1	Senthilkumar M	senthil@vmkvec.edu.in
2	Gowri Shankar R	gowrishankar@vmkvec.edu.in
3	Sanjay Singh	sanjay@vmkvec.edu.in

		Category	L	Т	Р	Credit
17ARCC83	AEROSPACE PROPULSION LAB	CORE	0	0	4	2

This course provides and creates a base for the students to develop concepts of working independently in aero engines.

Course Objectives

1	To understand the basic concepts of a propulsion system.
2	To provide practical knowledge on working of components of propulsion system.
3	To develop analytical skills for fault finding.
4	To develop confidence in working on an aircraft engine.
5	To develop an attitude of team work.

Course Outcomes

In the successful completion of the course, students will be able to

CO1.	Define principles of operation and identify components.	Remember
CO2.	Explain working of internal combustion engines.	Understand
CO3.	Employ analytical skills in finding faults in operation.	Apply
CO4.	Categorise the troubles and pin point the technical malfunction.	Analyze
CO5.	Evaluate and modify the system.	Evaluate
CO6.	Formulate and design a new modified engine.	Create

Mapping with Programme Outcomes and Programme Specific Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1.	L	L	L	L	-	-	-	-	-	-	-	-	L	L	L
CO2.	L	L	L	L	-	-	-	-	-	-	-	-	L	L	L
CO3.	S	S	S	S	-	-	-	-	-	-	-	-	М	Μ	Μ
CO4.	S	S	S	S	-	-	-	-	-	-	-	-	S	S	S
CO5.	S	S	S	S	-	-	-	-	-	-	-	-	S	S	S
CO6.	S	S	S	S	-	-	-	-	-	-	-	-	S	S	S

S- Strong; M-Medium; L-Low

LIST OF EXPERIMENTS

1.	Study, dismantling and identification of types of piston engine and their components.
2.	Piston Engine Components – Cleaning, Visual Inspection and Dimension checks.
3.	Study of Camshaft operation, firing order and magneto, valve timing.
4.	Study of various auxillary systems of piston engine.
5.	Piston Engine –Reassembly of dismantled components.
6.	Study, dismantling and identification of types of jet engine and their components.
7.	Jet Engine Components – Cleaning, Visual Inspection and Dimension checks.
8.	Non Destructive Testing of components.
9.	Study of various auxillary systems of jet engine.
10.	Jet Engine –Reassembly of dismantled components.
REFEREN	NCES:

AEROSPACE PROPULSION LAB MANUAL

Sl.No.	Name of the Faculty	Mail ID
1	Senthilkumar M	senthil@vmkvec.edu.in
2	R.Gowri Shankar	gowrishankar@vmkvec.edu.in
3	Sanjay Singh	sanjay@vmkvec.edu.in

ELECTIVE COURSES

SPECIALIZATION - AUTOMOTIVE ENGINEERING

17ATCC03	AUTOMOTIVE CHASSIS	Category	L	Т	Р	Credit	
		EC(SE)	3	0	0	3	

A chassis is the internal framework of an artificial object, which supports the object in its construction and use. An example of a chassis is a vehicle frame, the under part of a motor vehicle, on which the body is mounted; if the running gear such as wheels and transmission, and sometimes even the driver's seat, are included, then the assembly is described as a rolling chassis.

Prerequisite

Not Required

Course Objectives

1. To apply the concept of entire process involved in vehicle frame and steering systems.	
2. To perform the application of propeller shaft and final drive	
3. To employ the concepts of axles and tyres.	
4. To perform the application of Suspension System.	
5. To apply the concepts of braking system in automotive chassis	

Course Outcomes

On the successful completion of the course, students will be able to

CO1. Demomstrate the concepts and application of vehicle frame and steering systems	Apply
CO2. Employ the applications of propeller shaft and final drive	Apply
CO3. Practice the knowledge and application of axles and tyres	Apply
CO4. Utilize the applications ideas of Suspension System.	Apply
CO5. Operate the concepts and application of braking system.	Apply

Mapping with Programme Outcomes and Programme Specific Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
1.	S	Μ	L	Μ	-	-	-	-	-	-	-	-	L	-	-
2.	S	L	L	Μ	-	-	-	-	-	-	-	-	L	-	-
3.	S	Μ	L	Μ	-	-	-	-	-	-	-	-	L	-	-
4.	S	Μ	Μ	Μ	-	-	-	-	-	-	-	-	L	-	-
5.	S	М	М	М	-	-	-	-	-	-	-	-	L	-	-

S- Strong; M-Medium; L-Low

Syllabus

INTRODUCTION, FRAME, STEERING SYSTEM

Types of Chassis layout, with reference to Power Plant location and drive, various types of frames, Loads acting on vehicle frame, Constructional details and materials for frames, Testing of frames, Types of Front Axles and Stub Axles, Front Wheel Geometry, namely, Castor, Camber, King Pin Inclination and Toe–in, Condition for True Rolling Motion of Wheels during Steering, Ackerman's and Davis Steering Mechanisms, Steering Error Curve, Steering Linkages, Different Types of Steering Gears, Slip Angle, Over–Steer and Under–Steer, Reversible and Irreversible Steering, Power–Assisted Steering.

PROPELLER SHAFT AND FINAL DRIVE

Effect of Driving Thrust, torque reactions and side thrust, Hotchkiss drive, torque tube drive, radius rods and stabilizers, Propeller Shaft, Universal Joints, Constant Velocity Universal Joints, Front Wheel drive, Final drive, different types, Double reduction and twin speed final drives, Multi–axled vehicles, Differential principle and types, Differential housings, Non–Slip differential, Differential locks, Final drive of Crawler Tractors.

AXLES AND TYRES

Construction and Design of Drive Axles, Types of Loads acting on drive axles, Full – Floating, Three–Quarter Floating and Semi–Floating Axles, Axle Housings and Types, Types and Constructional Details of Different Types of Wheels and Rims, Different Types of Tyres and their constructional details.

SUSPENSION SYSTEM

Need for Suspension System, Types of Suspension Springs, Constructional details and characteristics of Single Leaf, Multi–Leaf, Coil, Torsion bar, Rubber, Pneumatic and Hydro – elastic Suspension Spring Systems, Independent Suspension System, Shock Absorbers, Types and Constructional details, Design of Leaf and Coil Springs.

BRAKING SYSTEM

Theory of Automobile Braking, Stopping Distance Time and Braking Efficiency, Effect of Weight Transfer during Braking, Theory of Drum Brakes, Leading and Trailing Shoes, Braking Torque, Constructional Details of Drum Brake and its Activators, Disc Brake Theory, Hydraulic, Mechanical, Pneumatic and Power–Assisted Braking System, Servo Brakes, Retarders, Anti–Lock Braking System.

TEXT BOOK:

- 1. Kripal Singh, Automobile Engineering, Standard Publisher, New Delhi, 2006.
- 2. R.K. Rajput, A Text-Book of Automobile Engineering, Laxmi Publications Private Limited, 2007.
- 3. N.K. Giri, Automotive Mechanics, Kanna Publishers, 2007.

REFERENCES:

- 1. Heldt P.M., Automotive Chassis, Chilton Co., New York, 1990
- 2. Newton Steeds and Garret, Motor Vehicles, 13th Edition, Butterworth, London, 2005.
- 3. Heinz Hezler, Modern Vehicle Technology, Butterworth, London, 2005.

Course	e Designers:							
S.No	Name of the Faculty	he Faculty Designation Department/College Ma		Mail ID				
1	T.Raja	Associate Professor	Auto / VMKVEC	IKVEC rajat@vmkvec.edu.in				
2	R. Prabhakar	Associate Professor	Auto / VMKVEC	prabhakar@vmkvec.edu.in				
3								
4								

17ATCC04	AUTOMOTIVE ELECTRICAL AND	Category	L	Т	Р	Credit
	ELECTRONICS SYSTEMS	EC(SE)	3	0	0	3
Preamble						

Automotive electrical and electronic systems used in road vehicles, enable study analyze and apply the concepts of various electrical and electronics component such as battery alternator ignition system and other engine management systems.

Prerequisite

Fundamentals of Automotive Engines

Course Objectives

To perform the concepts of battery and charging systems..
 To compilet the knowledge of starting systems in the vehicle.
 To employ the knowledge in the application of various types of charging system & lighting system.
 To demonstrate the application and knowledge of fundamental of automotive electronics.
 To employ the application and knowledge of sensors and actuators.

Course Outcomes

On the successful completion of the course, students will be able to

CO1. Generalize concepts of application in battery and charging systems	Apply
CO2. Determine the various concept of starting systems in the vehicle.	Understand
CO3. Employ the knowledge of various types of charging system & lighting system.	Apply
CO4. Generalize the application of fundamental of automotive electronics.	Apply
CO5. Employ the knowledge of application of sensors and actuators.	Apply

Mapping with Programme Outcomes and Programme Specific Outcomes

PP	8 //		5				· 8- ·····	me ~p			2				
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
1.	Μ	Μ	S	S	-	-	-	-	-	-	-	-	L	-	-
2.	S	S	Μ	М	-	-	-	-	-	-	-	-	L	-	-
3.	Μ	S	S	S	-	-	-	-	-	-	-	-	L	-	-
4.	Μ	S	S	S	-	-	-	-	-	-	-	-	L	-	-
5.	S	S	S	S	-	-	-	-	-	-	-	-	L	-	-

S- Strong; M-Medium; L-Low

Syllabus

BATTERIES

Principle and construction of lead-acid battery. Characteristics of battery, rating, capacity and efficiency of batteries. Various tests on battery condition, charging methods. Details of modern storage batteries.

STARTING SYSTEM

Condition of starting Behavior of starter during starting. Series motor and its characteristics. Principle & construction of starter motor. Working of different starter drive units. Care & maintenance of starter motor, Starter switches.

CHARGING SYSTEM & LIGHTING SYSTEM

Generation of direct current, shunt generator characteristics, armature reaction, third brush regulation, cutout. Voltage and current regulators, compensatedvoltage regulator, alternators principle and constructional aspects and bridgerectifiers, new developments.Lighting system: insulated and earth return system, details of head light and sidelight, LED lighting system, head light dazzling and preventive methods – Horn, wiper system and trafficator.

FUNDAMENTALS OF AUTOMOTIVE ELECTRONICS

Current trends in automotive electronic engine management system, electromagnetic interference suppression, electromagnetic compatibility, electronic dashboard instruments, onboard diagnostic system, security and warning system.

SENSORS AND ACTUATORS

Types of sensors: sensor for speed, throttle position, exhaust oxygen level, manifold pressure, crankshaft position, coolant temperature, exhaust temperature, air mass flow for engine application. Solenoids, stepper motors, relay.

TEXT BOOK:

- 1. Kholi, P.L., Automotive Electrical Equipment, Tata McGraw-Hill Co. Ltd., New Delhi, 1975.
- 2. Judge, A.W., Modern Electrical Equipment of Automobiles, Chapman & Hall, London, 1992.
- 3. Younng A.P & Griffiths L, "Automobile Electrical and Electronic Equipments", English Languages Book Society & New Press, 1990
- 4. Tom Weather Jr and Cland C.Hunter, "Automotive Computers and Control system", Prentice Hall Inc., New Jersey.

REFERENCES:

- 1. Vinal, G.W., Storage Batteries, John Wiley & Sons Inc., New York, 1985.
- 2. Crouse, W.H., Automobile Electrical Equipment, McGraw Hill Book Co. Inc., New York, 1980.
- 3. Spreadbury, F.G., Electrical Ignition Equipment, Constable & Co. Ltd., London, 1962.
- 4. Automotive Hand Book, fifth edition, Robert Bosch, Bently Publishers, 2003.

S.No	Name of the Faculty	Designation	Department/College	Mail ID
1	T.Raja	Associate Professor	Auto / VMKVEC	rajat@vmkvec.edu.in
2	R. Prabhakar	Associate Professor	Auto / VMKVEC	prabhakar@vmkvec.edu.in
3				
4				

ENGINE AND VEHICLE MANAGEMENT SYSTEM

Category	L	Т	Р	С
EC(SE)	3	0	0	3

Preamble

To study and purpose is to understand engine management system

Prerequisite

NIL

Course	e Objectives				
1	To understand the fundamentals of automotive electronics in details.				
2	To understand the types sensors				
3	To impart knowledge on SI engine management system.				
4	To impart knowledge on CI engine management system.				
5	To understand the vehicle management systems				
Course	Course Outcomes:				

After Successful completion of this course, the students will be able to:

CO1	. Und	Understand the vehicle motion control and stabilization system								Understand					
CO2	CO2. Know the importance of Driver assistance, security and warning system								Unders	Understand					
CO3	. Und	erstand	the var	tious sa	fety co	oncepts	used in	passer	nger ca	rs				Unders	stand
CO4	CO4. Understand the basics of vehicle collision and its effects.							Unders	stand						
CO5	CO5. Gain the knowledge of Safety and comfort system							Unders	stand						
		Μ	lapping	g with I	Progra	mme (Outcon	nes and	l Progr	amme	Specifi	ic Outo	comes		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S					М						М	L		
CO2		М	S		М		М						L		
CO3		М		S				М	М				L		
CO4	S		М	М						М	М		L		
CO5	S	S	М									S	L		

S- Strong; M-Medium; L-Low

Syllabus

FUNDAMENTALS OF AUTOMOTIVE ELECTRONICS

Microprocessor architecture, open and closed loop control strategies, PID control, Look up tables, Introduction to modern control strategies like Fuzzy logic and adaptive control. Parameters to be controlled in SI and CI enignes and in the other parts of the automobile

SENSORS

Inductive, Hall effect, hot wire, thermistor, piezo electric, piezoresistive, based sensors. Throttle position, air mass flow, crank shaft position, cam position, engine and wheel speed, steering position, tire pressure, brake pressure, steering torque, fuel level, crash, exhaust oxygen level (two step and linear lambda), knock, engine temperature,

manifold temperature and pressure sensors

SI ENGINE MANAGEMENT

Three-way catalytic converter, conversion efficiency versus lambda. Layout and working of SI engine management systems like Bosch L-Jetronic and LH-Jetronic. Group and sequential injection techniques. Working of the fuel system components. Cold start and warm up phases, idle speed control, acceleration and full load enrichment, deceleration fuel cutoff. Fuel control maps, open loop control of fuel injection and closed loop lambda control. Electronic ignition systems and spark timing control. Closed loop control of knock.

CI ENGINE MANAGEMENT

Fuel injection system parameters affecting combustion, noise and emissions in CI engines. Pilot, main, advanced post injection and retarded post injection. Electronically controlled Unit Injection system. Layout of the common rail fuel injection system. Working of components like fuel injector, fuel pump, rail pressure limiter, flow limiter, EGR valve

VEHICLE MANAGEMENT SYSTEMS

ABS system, its need, layout and working. Electronic control of suspension – Damping control, Electric power steering, Supplementary Restraint System of air bag system – crash sensor, seat belt tightening. Cruise control. Vehicle security systems- alarms, vehicle tracking system. On board diagnostics. Collision avoidance Radar warning system.

TEXT BOOK:

William B Ribbens "Understanding Automotive Electronics", SAE Publications, 1998
 Eric Chowanietz "Automobile Electronics" SAE Publications, 1994

REFERENCES:

- 1. Robert Bosch "Diesel Engine Management" SAE Publications, 2006
- 2. Robert Bosch, "Gasoline Engine Management" SAE Publications, 2006.

Course	Designers.			
S.No	Name of the Faculty	Designation	Department/College	Mail ID
1	T.RAJA	ASSOCIATE	AUTO / VMKVEC	rajat@vmkvec.edu.in
		PROFESSOR		
2	R. PRABHAKAR	ASSOCIATE	AUTO / VMKVEC	prabhakar@vmkvec.edu.in
		PROFESSOR		-
3	M.SARAVANA KUMAR	ASST. PROF GRII	MECH./ AVIT	saravanakumar@avit.ac.in

VEHICLE MAINTENANCE

Category	L	Т	Р	С
EC(SE)	3	0	0	4

Preamble

To study and purpose is to understand various vehicle maintenance

Prerequisite

Nil

Course	Objectives
1	To understand the maintenance of records and schedules.
2	To understand the engine maintenance and repair and overhauling.
3	To understand the chassis maintenance and repair and overhauling
4	To impart the various electrical system maintenance service and repairs.
5	To understand the various maintenance of cooling, fuel, lubrication and body.

Course Outcomes:

After Successful completion of this course, the students will be able to:

CO1	. To le	earn the	e detaile	ed stud	y of ma	intenar	nce reco	ords an	d sched	lule				Unde	erstand
CO2	. To le	earn the	e detaile	ed stud	y of ma	intenar	nce, rep	air and	overha	auling o	of engir	ne		Understand	
CO3	CO3. To learn the detailed study of maintenance, repair and overhauling of chassis drive line components											Unde	erstand		
CO4	CO4. To learn the detailed study of maintenance, repair and servicing of electrical systems											Unde	Understand		
CO5	CO5. To learn of detailed study of maintenance, repair and servicing of cooling lubrication system, fuel system and body										Unde	Understand			
		Μ	lapping	g with I	Progra	mme (Outcom	nes and	Progr	amme	Specif	ic Outo	comes		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S					М						М	L		
CO2		М	S		М		М						L		
CO3		М		S				М	М				L		
CO4	S		М	Μ						М	М		L		
CO5	S	S	М									L	L		
C Stron	- Strong: M-Medium: L-Low														

S- Strong; M-Medium; L-Low

Syllabus

MAINTENANCE OF RECORDS AND SCHEDULES

Importance of maintenance, preventive (scheduled) and breakdown (unscheduled) maintenance, requirements of maintenance, preparation of check lists. Inspection schedule, maintenance of records, log sheets and other forms, safety precautions in maintenance.

ENGINE MAINTENANCE – REPAIR AND OVERHAULING

Dismantling of engine components and cleaning, cleaning methods, visual and dimensional inspections, minor and major reconditioning of various components, reconditioning methods, engine assembly, special tools used for maintenance overhauling, engine tune up

CHASSIS MAINTENANCE - REPAIR AND OVERHAULING

Mechanical and automobile clutch and gear box, servicing and maintenance, maintenance servicing of propeller shaft and differential system. Maintenance servicing of suspension systems. Brake systems, types and servicing techniques. Steering systems, overhauling and maintenance. Wheel alignment, computerized alignment and wheel balancing.

ELECTRICAL SYSTEM MAINTENANCE - SERVICING AND REPAIRS

Testing methods for checking electrical components, checking battery, starter motor, charging systems, DC generator and alternator, ignitions system, lighting systems. Fault diagnosis and maintenance of modern electronic controls, checking and servicing of dash board instruments.

MAINTENANCE OF FUEL SYSTEM, COOLING SYSTEMS, LUBRICATION SYSTEM AND VECHICLE BODY

Servicing and maintenance of fuel system of different types of vehicles, calibration and tuning of engine for optimum fuel supply. Cooling systems, water pump, radiator, thermostat, anticorrosion and antifreeze additives. Lubrication maintenance, lubricating oil changing, greasing of parts. Vehicle body maintenance, minor and major repairs. Door locks and window glass actuating system maintenance

TEXT BOOK:

- 1. John Doke "Fleet Management", McGraw-Hill Co. 1984
- 2. Venk Spicer, "Automotive Maintenance and Trouble Shooting".

REFERENCES:

- 1. James D Halderman Advanced Engine Performance Diagnosis PHI 1998
- 2. Judge.A.W., "Maintenance of high speed diesel engines", Chapman Hall Ltd., London.

Cour	se Designers.			
S.No	Name of the Faculty	Designation	Department/College	Mail ID
1	T.RAJA	ASSOCIATE	AUTO / VMKVEC	rajat@vmkvec.edu.in
		PROFESSOR		
2	R. PRABHAKAR	ASSOCIATE	AUTO / VMKVEC	prabhakar@vmkvec.edu.in
		PROFESSOR		
3	M.SARAVANA KUMAR	ASST. PROF GRII	MECH./ AVIT	saravanakumar@avit.ac.in

TWO AND THREE-WHEELER TECHNOLOGY

Category	L	Т	Р	С
EC(SE)	3	0	0	3

Preamble

To study and purpose is to understand two and three-wheeler technology

Prerequisite

NIL

Course	Objec	tives													
1	To und	lerstand	l the po	wer un	its.										
		lerstand			0	2									
		lerstand			0	2	ıs								
		lerstand													
	Course Outcomes: After Successful completion of this course, the students will be able to:														
After Su	lccessfi	ul comp	oletion	of this	course,	the stu	dents v	vill be a	able to:						
CO1	CO1. To learn the detailed study of the power unit											Unde	erstand		
CO2. To learn the detailed study of chassis and sub-systems											Understand				
CO3	CO3. To learn the detailed study of brakes and wheels										Understand				
CO4	CO4. To learn the detailed study of two wheelers										Unde	erstand			
CO5	5. App	ly the d	letailed	study o	of three	wheel	ers							Aŗ	oply
		Μ	lapping	g with]	Progra	mme (Jutcom	nes and	Progr	amme	Specifi	ic Outc	comes		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S					М						М	L		
CO2		М	S		М		М						L		
CO3		М		S				М	М				L		
CO4	S		М	М						М	М		L		
CO5	S	S	М									S	L		
S- Stron	g; M-N	Aedium	; L-Lo	W											

Syllabus

THE POWER UNIT

Two stroke and four stroke SI engine, merits and demerits, symmetrical and unsymmetrical port timing diagrams. Types of scavenging processes, merits and demerits, scavenging efficiency. scavenging pumps. rotary valve engine..

FUEL AND IGNITION SYSTEMS

Fuel system, Fuel injection system, Lubrication system. Magneto coil and battery coil spark ignition system. Electro ignition system. Kick starter system

CHASSIS AND SUB-SYSTEM

Main frame, its types. Chassis and shaft drive. Single, multiple plates and centrifugal clutches. Gear box and gear controls. Front and rear suspension systems. Shack absorbers. Panel meters and controls on handle bar.

BRAKES AND WHEELS

Drum brakes, disc brakes, front and rear brake links layouts. spoked wheel, cast wheel. Disc wheel. Disc types. Types and Tubes

TWO AND THREE WHEELERS CASE STUDY

Case study of Sports bike, Motor cycles, Scooters and Mopeds - Auto rickshaws, Pick up van, Delivery van and Trailer. Servicing and maintenance. Recent developments

TEXT BOOK:

- 1. Irving, P.E., Motor cycle Engineering, Temple press Book, Loondon, 1992
- Bryaut, R.V., Vespa Maintenance and repair series. RAYMOND Broad, Lambretta- A practical guide to maintenance and repair, 1987

REFERENCES:

- 1. The Cycle Motor Manual, Temple Press Ltd., London, 1990
- 2. Encyclopedia of Motor cycling, 20 volumes, Marshall Cavensih, New York and London, 1989.

- 10	Course	Designers.					
	S.No	Name of the Faculty	Designation	Department/College	Mail ID		
	1	T.RAJA	A ASSOCIATE PROFESSOR		rajat@vmkvec.edu.in		
	2	R. PRABHAKAR	PRABHAKAR ASSOCIATE PROFESSOR		prabhakar@vmkvec.edu.in		
ſ	3	M.SARAVANA KUMAR	ASST. PROF GRII	MECH./ AVIT	saravanakumar@avit.ac.in		

17ATCC82	AUTOMOTIVE CHASSIS LAB	Category	L	Т	Р	Credit
		EC(SE)	0	0	4	2

To impart knowledge in the assembling and dismantling of different types of systems like steering system, transmission system and braking system.

Prerequisite

Automotive Chassis

Course Objectives

To employ the knowledge and measurement of light and heavy commercial Vehicle chassis

To demonstrate the knowledge to dismantling, study and Assembling of front and rear axle .

To demonstrate the knowledge to dismantling, study and Assembling of Clutch, Gearbox, Steering gearbox, Breaking and Differential systems

Course Outcomes

On the successful completion of the course, students will be able to

CO1. Employ practice of measurement of light and heavy commercial Vehicle chassis	Apply						
CO2. Demonstrate Thoroughly develop knowledge of dismantling, study and Assembling of front and rear axle.	Apply						
CO3. Demonstrate the knowledge in dismantling, study and Assembling of clutch, gearbox, steering gearbox, breaking and differential systems	Apply						
Mapping with Programme Outcomes and Programme Specific Outcomes							

PP															
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	S	S	L	Μ	М	-	-	-	-	-	L	-	-
CO2	S	S	S	S	Μ	Μ	М	-	-	-	-	-	L	-	-
CO3	S	S	S	S	Μ	Μ	М	-	-	-	-	-	L	-	-

S- Strong; M-Medium; L-Low

Syllabus

LIST OF EXPERIMENTS

- 1. Study and measurement of Light commercial vehicle chassis layout
- 2. Study and measurement of Heavy commercial vehicle chassis layout
- 3. Dismantling, study and Assembling of Front Axle Systems.
- 4. Dismantling, study and Assembling of Rear Axle Systems
- 5. Dismantling, study and Assembling of steering systems with different Steering gearboxes
- 6. Dismantling, study and Assembling of Clutch.
- 7. Dismantling, study and Assembling of Gear box with different gear box
- 8. Dismantling, study and Assembling of Differential.
- 9. Dismantling, study and Assembling of Braking system.
- 10. Dismantling, study and Assembling of different types of suspension system.

Text Books

1. 'Automotive Chassis Lab Manual', Department of Automobile Engineering, VMKV engineering College, Vinayaka Mission's Research Foundation (Deemed to be University), Salem.

Course	urse Designers:											
S.No	Name of the Faculty	Designation	Department/College	Mail ID								
1	T.Raja	Associate Professor	Auto / VMKVEC	rajat@vmkvec.edu.in								
2	R. Prabhakar	Associate Professor	Auto / VMKVEC	prabhakar@vmkvec.edu.in								
3												

17ATCC83	AUTOMOTIVE ELECTRICAL AND	Category	L	Т	Р	Credit
	ELECTRONICS LAB	EC(SE)	0	0	4	2

To familiarize and train the students on the constructional arrangements of different electrical system of automobiles and study the automobile electronics components.

Prerequisite

Automotive Electrical and Electronics

Course Objectives

- 1. To perform in battery tests, charging system and starting system trouble shooting.
- 2. To demonstrate the application knowledge in the operation of alternator and lighting system.
- 3. To describe the temperature and optical sensor.

Course Outcomes

On the successful completion of the course, students will be able to

CO1. Practice the application of battery tests, charging system and starting system trouble shooting													Apply		
CO2. Demonstrate thoroughly develop knowledge in application of operation of alternator and lighting system.												Apply			
CO3. Describe thoroughly understand concepts temperature and optical sensor										U	Understand				
Mappir	Mapping with Programme Outcomes and Programme Specific Outcomes														
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	M	Μ	Μ	М	-	-	-	-	-	-	-	-	L	-	-
CO2	M	М	Μ	М	-	-	-	-	-	-	-	-	L	-	-
CO3	S	S	Μ	М	-	-	-	-	-	-	-	-	L	-	-
S- Stron	S- Strong; M-Medium; L-Low														

Syllabus

LIST OF EXPERIMENTS

- 1. Testing, charging and discharging of lead acid battery used in automobiles.
- 2. Testing and troubleshooting of starting system in automobiles.
- 3. Starter motor component test.
- 4. Testing and troubleshooting of charging system in automobiles.
- 5. Alternator component test.
- 6. Testing and troubleshooting of lighting system in automobiles.
- 7. Testing of lighting conventional analog instrumentation, indicator light, warning devices.
- 8. Study of Temperature measurement using thermocouple.
- 9. Study of optical sensor

Text Books

 'Automotive Electrical and Electronics Lab Manual', Department of Automobile Engineering, VMKV engineering College, Vinayaka Mission's Research Foundation (Deemed to be University),Salem

Course	e Designers.			
S.No	Name of the Faculty	Designation	Department/College	Mail ID
1	T.Raja	Associate Professor	Auto / VMKVEC	rajat@vmkvec.edu.in
2	R. Prabhakar	Associate Professor	Auto / VMKVEC	prabhakar@vmkvec.edu.in
3				
4				

17ATCC88

L

0

Preamble

To impart knowledge on clutch, gear box and performance on two and three wheeler

Prerequisite

Course Objectives

1	To understand the performance shock absorber and coil spring

- 2 To understand the two wheeler chain tension
- 3 To study three wheeler chassis frame.

Course Outcomes:

After Successful completion of this course, the students will be able to:

CO1	CO1. Undergo practical training in to performance test on shock absorber and coil spring.													Apply	Apply	
CO2. To gain the knowledge for finding tension in the two wheeler												Apply	Apply			
CO3. To gain the knowledge of various parts of Three wheeler chassis frame.												Unders	Understand			
	Mapping with Programme Outcomes and Programme Specific Outcomes															
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	S	S	М	М	L	М	L	-	М	М	М	М	М	М	S	
CO2	S	S	М	М	L	М	L	-	М	М	М	М	Μ	М	S	
CO3	S	S	М	М	L	М	L	-	М	М	М	М	М	Μ	S	

S- Strong; M-Medium; L-Low

Syllabus

LIST OF EXPERIMENTS

- 1. Performance test of a shock absorber.
- 2. Performance test on coil spring.
- 3. Two wheeler chain tension test.
- 4. Brake and Clutch adjustment as per specification.
- 5. Dismantling and assembling of two wheeler gear box and finding gear ratio.
- 6. Dismantling and assembling of three wheeler gear box and finding gear ratios.
- 7. Dismantling and assembling of three wheeler steering system.
- 8. Study of three wheeler chassis frame and power transmission system.

Cours	L'Designers.			
S.No	Name of the Faculty	Designation	Department/College	Mail ID
1	T.RAJA	ASSOCIATE PROFESSOR	AUTO / VMKVEC	rajat@vmkvec.edu.in
2	R. PRABHAKAR	ASSOCIATE PROFESSOR	AUTO / VMKVEC	prabhakar@vmkvec.edu.in
3	M.SARAVANA KUMAR	ASST. PROF GRII	MECH./ AVIT	saravanakumar@avit.ac.in
4.	C.THIAGARAJAN	ASST. PROF GRII	MECH./ AVIT	cthiagarajan@avit.ac.in

VEHICLE MAINTENANCE AND
SERVICING LAB

Category	L	Т	Р	С
EC(SE)	0	0	4	2

Μ

Μ

M M

Μ

Μ

S

Preamble

To provide in house training in vehicle servicing and maintenance

Prerequisite

Course Objectives

1	1 To understand the clutch and gear box servicing														
2	2 To understand the Differential unit														
3 To understand the Ackermann Steering geometry															
Course Outcomes:															
After Successful completion of this course, the students will be able to:															
CO1. Undergo practical training in servicing of Gear box												Apply			
CO2. To gain the knowledge in servicing of Differential unit.												Apply			
CO3. To undergo the training in various steering geometry available in four wheeler.													Understand		
Mapping with Programme Outcomes and Programme Specific Outcomes															
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	М	М	L	М	L	-	М	М	М	М	М	М	S

-

_

Μ

Μ

Μ

М

М

Μ

S- Strong; M-Medium; L-Low

S

S

S

S

Syllabus

CO2

CO3

LIST OF EXPERIMENTS

- 1. Clutch assembly and servicing
- 2. Gearbox assembly and servicing
- 3. Differential unit assembly and servicing

М

Μ

Μ

Μ

L

L

Μ

М

L

L

- 4. Transaxle assembly and servicing
- 5. Different types of rear axle assembly and servicing
- 6. Brake system trouble shooting
- 7. Wheel alignment testing
- 8. Ackermann Steering geometry verification
- 9. Electrical signal and circuits
- 10. Servicing of accessories such as wiper motor, A/C system

Course Designers:				
S.No	Name of the Faculty	Designation	Department/College	Mail ID
1	T.RAJA	ASSOCIATE PROFESSOR	AUTO / VMKVEC	rajat@vmkvec.edu.in
2	R. PRABHAKAR	ASSOCIATE PROFESSOR	AUTO / VMKVEC	prabhakar@vmkvec.edu.in
3	M.SARAVANA KUMAR	ASST. PROF GRII	MECH./ AVIT	saravanakumar@avit.ac.in
4.	C.THIAGARAJAN	ASST. PROF GRII	MECH./ AVIT	cthiagarajan@avit.ac.in

17ATEC04

EC(SE)

3	0	0	3

Preamble

This course reviews the fundamental concepts of earth moving equipments, power train concepts, sub systems of special types of vehicles, farm equipment, military and combat vehicles and special purpose vehicles for industrial applications. **Prerequisite**

Nil

Course Objectives

	0									
1	To learn the detailed study of earth moving and constructional equipments									
2	2 To learn the detailed study of power train concepts									
3	3 To learn the detailed study of sub systems of special types of vehicles									
4	To learn the detailed study of farm equipments, military and combat vehicles									
5	To learn of detailed study of special purpose vehicles for industrial applications									
Course	Outcomes:									
After Su	After Successful completion of this course, the students will be able to:									
CO1.	Understand earth moving and constructional equipments	Understand								
CO2.	Know the power train concepts	Understand								
CO3.	Know the sub systems of special types of vehicles	Understand								
CO4.	CO4. Use farm equipments, military and combat vehicles									
CO5.	CO5. Use special purpose vehicles for industrial applications									

	Μ	apping	g with l	Progra	mme ()utcom	es and	Progr	amme	Specifi	ic Outc	comes	

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	М	L		L	L					L			
CO2	S	М	М	М	М	L	L					L			
CO3	S	S	S	S	S	М	М				L				
CO4	S	S	S	S	S	М	М				L				
CO5	S	S	S	S	S	S	S								

S- Strong; M-Medium; L-Low

Syllabus

CLASSIFICATION AND REQUIREMENTS OF OFF ROAD VEHICLES

Construction layout, capacity and applications. Power Plants, Chassis and Transmission, Multivalve vehicles. **EARTH MOVING MACHINES**

Earthmovers like dumpers, loaders - single bucket, Multi bucket and rotary types- bulldozers, excavators, backhoe loaders, scrappers, drag and self powered types, Bush cutters, stumpers, tree dozer, rippers etc. – Power and capacity of earthmoving machines.

SCRAPPERS, GRADERS, SHOVELS AND DITCHERS

Scrappers, elevating graders, motor graders, self powered scrappers and graders, Power shovel, revolving and stripper shovels – drag lines – ditchers – capacity of shovels.

FARM EQUIPMENTS, MILITARY AND COMBAT VEHICLES

Power take off, special implements. Special features and constructional details of tankers, gun carriers and transport vehicles.

VEHICLE SYSTEMS, FEATURES

Brake system and actuation – OCDB and dry disc caliper brakes. Body hoist and bucket operational hydraulics. Hydro-pneumatic suspension cylinders. Power steering system. Kinematics for loader and bulldozer operational linkages. Safety features, safe warning system for dumper. Design aspects on dumper body, loader bucket and water tank of sprinkler.

TEXT BOOK:

- 1. Off the road wheeled and combined traction devices Ash gate Publishing Co.Ltd. 1988
- 2. Satyanarayana. B., Construction planning and equipment, standard publishers and distributors, New Delhi.

REFERENCES:

- 1. Abrosimov.K. Branberg.A and Katayer.K, Road making machinery, MIR Publishers, Moscow, 1971.
- 2. Bart H Vanderveen, Tanks and Transport vehicles, Frederic Warne and Co Ltd., London.
- 3. Nakra C.P., "Farm machines and equipments" Dhanparai Publishing company Pvt. Ltd.
- Robert L Peurifoy, "Construction, planning, equipment and methods" Tata McGraw Hill Publishing company Ltd.

Course	e Designers:			
S.No	Name of the Faculty	Designation	Department/College	Mail ID
1	T.Raja	Associate Professor	Auto / VMKVEC	rajat@vmkvec.edu.in
2	R. Prabhakar	Associate Professor	Auto / VMKVEC	prabhakar@vmkvec.edu.in
3	N. Shivakumar	Asst. Prof II	Mechanical, AVIT	shivakumar@avit.ac.in
4				

17ATEC15	VEHICLE TRANSPORT MANAGEMENT	Category	L	Т	Р	С
ITALECIS		EC(SE)	3	0	0	3

Preamble

This course reviews the methods of training and training procedure in the transport management, scheduling and fare structure of various public and private and state government undertaking vehicles, maintenance and motor vehicle act **Prerequisite**

Course Objectives

Obje														
To stu	To study the various test of selection processes and personal management													
To lea	To learn the various transport system													
To lea	rn the v	various	fare co	llecting	g metho	ods and	l proble	ms on s	schedul	ing				
To stu	dy the I	Motor v	vehicle .	Act of	India									
	<u> </u>	nainter	nance of	f transp	ort ind	ustry a	nd desig	gn of B	us depo	ot layou	ıt			
Outco	omes:													
uccess	ful com	pletion	of this	course,	the stu	idents v	will be a	able to:						
. Apj	bly the	persona	al mana	gemen	t and tr	aining	for sele	ction p	rocesse	s			Unde	rstand
CO2. Understand the various division of transport management								Apply						
CO3. Construct table for various fare collecting methods and apply it								Apply						
6 117							Apply							
. Apj	oly the r	nainter	ance sy	stem o	of transp	port							Apply	
	N	lappin	g with]	Progra	mme (Dutcon	nes and	l Progr	amme	Specifi	ic Outco	mes		
PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
S					L							L		
S												L		
S	L	М	М	М			L	L				L		
S					М	L		L	L			L		
S	М	M	М	М			М	L	М	М	М	L		
	To stu To lea To lea To stu To stu Outco Uuccessf . App . Unc . Cor . App . S . S . S . S . S . S	To learn the vTo learn the vTo study the lTo study the lTo study the lTo study the lOutcomes:uccessful comApply theUnderstandOnstructKnow theApply the lP01P01P02SSLSLSS	To study the various To learn the various To learn the various To study the Motor v To study the Motor v To study the mainter Outcomes: uccessful completion Apply the persona Understand the va Construct table for Know the motor v Apply the mainter Mappin PO1 PO2 PO3 S S L M S	To study the various test of a To learn the various transpo To learn the various fare co To study the Motor vehicle a To study the maintenance of Outcomes: uccessful completion of this Apply the personal mana Understand the various di Construct table for various Know the motor vehicle Apply the maintenance sy <u>Mapping with</u> PO1 PO2 PO3 PO4 S S S L M M S	To study the various test of selection To learn the various transport system To learn the various fare collecting To study the Motor vehicle Act of To study the maintenance of transport Outcomes: uccessful completion of this course, Apply the personal managemen Understand the various division Construct table for various fare Know the motor vehicle Act of Apply the maintenance system of Mapping with Progration P01 P02 P03 P04 P04 P05 S S L M M S S S S S S S S S S S S S S S	To study the various test of selection proc To learn the various transport system To learn the various fare collecting method To study the Motor vehicle Act of India To study the maintenance of transport ind Outcomes: uccessful completion of this course, the study . Apply the personal management and transport . . Understand the various division of transport . Construct table for various fare collection . . Mapping with Programme (PO1 PO2 PO3 PO4 PO5 S S L M M S S L M M	To study the various test of selection processes a To learn the various transport system To learn the various fare collecting methods and To study the Motor vehicle Act of India To study the maintenance of transport industry at Outcomes: uccessful completion of this course, the students v . Apply the personal management and training . Understand the various division of transport methods . Construct table for various fare collecting methods . Know the motor vehicle Act of India . Mapping with Programme Outcom P01 P02 P03 P04 P05 P06 P07 S S S L M M S	To study the various test of selection processes and pers To learn the various transport system To learn the various fare collecting methods and proble To study the Motor vehicle Act of India To study the maintenance of transport industry and designed Outcomes: uccessful completion of this course, the students will be a Apply the personal management and training for sele Understand the various division of transport managen Construct table for various fare collecting methods and Know the motor vehicle Act of India Apply the maintenance system of transport Mapping with Programme Outcomes and P01 P02 P03 P04 P05 P06 P07 P08 S S L M M S M L	To study the various test of selection processes and personal matrix To learn the various transport system To learn the various fare collecting methods and problems on selection To study the Motor vehicle Act of India To study the maintenance of transport industry and design of B Outcomes: uccessful completion of this course, the students will be able to: Apply the personal management and training for selection p Understand the various division of transport management Construct table for various fare collecting methods and appl Know the motor vehicle Act of India Apply the maintenance system of transport Mapping with Programme Outcomes and Progr P01 P02 P03 P04 P05 P06 P07 P08 P09 S S L M M	To study the various test of selection processes and personal managem To learn the various transport system To learn the various fare collecting methods and problems on schedul To study the Motor vehicle Act of India To study the maintenance of transport industry and design of Bus depo Outcomes: uccessful completion of this course, the students will be able to: Apply the personal management and training for selection processe Understand the various division of transport management Construct table for various fare collecting methods and apply it Know the motor vehicle Act of India P01 P02 P03 P04 P05 P06 P07 P08 P09 P010 S L S L M M	To study the various test of selection processes and personal management To learn the various transport system To learn the various fare collecting methods and problems on scheduling To study the Motor vehicle Act of India To study the maintenance of transport industry and design of Bus depot layou Outcomes: uccessful completion of this course, the students will be able to: Apply the personal management and training for selection processes Understand the various division of transport management Construct table for various fare collecting methods and apply it Know the motor vehicle Act of India Mapping with Programme Outcomes and Programme Specifi P01 P02 P03 P04 P05 P06 P07 P08 P09 P010 P011 S L S L M M M S M L L L	To study the various test of selection processes and personal management To learn the various transport system To learn the various fare collecting methods and problems on scheduling To study the Motor vehicle Act of India To study the maintenance of transport industry and design of Bus depot layout Outcomes: uccessful completion of this course, the students will be able to: Apply the personal management and training for selection processes Understand the various division of transport management Construct table for various fare collecting methods and apply it Know the motor vehicle Act of India Apply the maintenance system of transport Mapping with Programme Outcomes and Programme Specific Outco P01 P02 P03 P04 P05 P06 P07 P08 P09 P010 P011 P012 S -	To study the various test of selection processes and personal management To learn the various transport system To learn the various fare collecting methods and problems on scheduling To study the Motor vehicle Act of India To study the maintenance of transport industry and design of Bus depot layout Outcomes: uccessful completion of this course, the students will be able to: Apply the personal management and training for selection processes Understand the various division of transport management Construct table for various fare collecting methods and apply it Know the motor vehicle Act of India Apply the maintenance system of transport Mapping with Programme Outcomes and Programme Specific Outcomes POI PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 S L L L S L M M M M L L L S L M M M M L L L S M L L	To study the various test of selection processes and personal management To learn the various transport system To learn the various fare collecting methods and problems on scheduling To study the Motor vehicle Act of India To study the maintenance of transport industry and design of Bus depot layout Outcomes: uccessful completion of this course, the students will be able to: Apply the personal management and training for selection processes Unde Understand the various division of transport management Construct table for various fare collecting methods and apply it Know the motor vehicle Act of India Know the motor vehicle Act of India Mapply the maintenance system of transport Mapping with Programme Outcomes and Programme Specific Outcomes Napping with Programme Outcomes and Programme Specific Outcomes Napping with Mapping Pois Pois Pois Pois Pois Pois Pois Pois

S- Strong; M-Medium; L-Low

Syllabus

INTRODUCTION

Personnel management; objectives and functions of personnel management, psychology, sociology and their relevance to organization, personality problems. Selection process: job description, employment tests, interviewing, introduction to training objectives, advantages, methods of training, training procedure, psychological tests.

TRANSPORT SYSTEMS

Introduction to various transport systems. Advantages of motor transport. Principal function of administrative, traffic, secretarial and engineering divisions. Chain of responsibility forms of ownership by state, municipality, public body and private undertakings

SCHEDULING AND FARE STRUCTURE

Principal features of operating costs for transport vehicles with examples of estimating the costs. Fare structure and method of drawing up of a fare table. Various types of fare collecting methods. Basic factors of bus scheduling. Problems on bus scheduling

MOTOR VEHICLE ACT

Traffic signs, fitness certificate, registration requirements, permit insurance, constructional regulations, description of vehicle-tankers, tippers, delivery vans, recovery vans, Power wagons and fire fighting vehicles. Spread over, running time, test for competence to drive.

MAINTENANCE

Preventive maintenance system in transport industry, tyre maintenance procedures. Causes for uneven tyre wear; remedies, maintenance procedure for better fuel economy, Design of bus depot layout.

TEXT BOOK:

1. John Duke, "Fleet Management", McGraw-Hill Co, USA, 1984.

REFERENCES:

1. Government Motor Vehicle Act, Publication on latest act to be used as on date

Course Designers:

Cours	se Designers.			
S.No	Name of the Faculty	Designation	Department/College	Mail ID
1	T.Raja	Associate Professor	Auto / VMKVEC	rajat@vmkvec.edu.in
2	R. Prabhakar	Associate Professor	Auto / VMKVEC	prabhakar@vmkvec.edu.in
3	A.Imithyas	Asst. Prof. Gr - I	Mechanical, AVIT	imthicyr @avit.ac.in
4				

ELECTIVE COURSES SPECIALIZATION - ENERGY ENGINEERING

	ENERGY CONSERVATION IN	Category	L	Т	Р	CREDIT
17MESE01	THERMAL SYSTEMS	EC(SE)	3	0	0	3
						1 1

Preamble

This course is intended to introduce principles of energy auditing and to provide measures for energy conservation in thermal utilities

Prerequisite

NIL

Course Objectives

1	To provide him the present energy scenario and the need for energy conservation.
2	To understand energy monitoring / targeting aspects of Energy
3	To study the different measures for energy conservation and financial implications of various
	thermal utilities.
4	To study the different measures of energy conservation in thermal systems.
5	To provide energy conservation measures of different thermal utilities.

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Understand the energy sources and scenario.	Understand
CO2	Understand energy monitoring / targeting aspects of Energy	Analysis
CO3	To apply the measures for energy conservation and financial implications of	Apply
	various thermal utilities.	
CO4	To apply the concepts and performance study of different types of corrosion	Apply
CO5	Performance analysis of thermal utilities	Analysis

Mapping with Programme Outcomes and Programme Specific Outcomes

С	PO	РО	PS	PS	PSO3										
Ο	1	2	3	4	5	6	7	8	9	10	11	12	01	02	
C 01	S	М	L	М	L	L	-	-	-	-	-	-	L	-	-
C O2	S	М	S	М	L	L	L	-	-	-	M	М	S	М	-
C O3	S	М	S	М	L	L	L	-	-	-	M	М	S	М	-
C O4	S	М	S	М	L	L	L	-	-	-	M	М	S	М	-
C O5	М	М	М	L	L	L	М	-	-	-	M	М	М	М	-

S- Strong; M-Medium; L-Low

Syllabus

INTRODUCTION Indian Energy Scenario – Types & Forms of Energy - Primary / Secondary Energy Sources – Energy Conservation - Need - EC Act 2003 : Salient Features - Energy Intensive Industries - Barriers - Roles & Responsibility of Energy Managers – Energy Auditing : Preliminary & Detailed - Benchmarking.

ENERGY MONITORING & TARGETING

Data & Information Analysis - Cost / Energy Share Diagram - Data Graphing - Break Even Analysis -Depreciation - Financial Analysis Techniques - CUSUM Technique - ESCO Concept - ESCO Contracts.

PERFORMANCE STUDY OF THERMAL UTILITIES - 1

Boiler - Stoichiometry - Combustion Principles - Heat Loss Estimation - Steam Traps - Steam Piping & Distribution - Thermic Fluid Heaters - Furnaces - Insulation & Refractories

PERFORMANCE STUDY OF THERMAL UTILITIES – 2

Introduction- forms of corrosion-pitting, intergranular, stress corrosion, corrosion fatigue, dezincification, erosion-corrosion, Crevice Corrosion, Fretting-Protection methods-PVD, CVD.

PERFORMANCE STUDY OF THERMAL UTILITIES - 3

Basics of R & A/C - COP / EER / SEC Evaluation - Psychometric Chart Analysis - Types & Applications of Cooling Towers - Basics - Performance Analysis - DG Set - Performance Prediction-Cost of Power Generation – Scope for Energy Conservation in all these

Text Books:

- Smith, CB Energy Management Principles, Pergamon Press, NewYork, 1981 1
- Hamies, Energy Auditing and Conservation; Methods Measurements, Management and Case study, 2 Hemisphere, Washington, 1980
- Trivedi, PR, Jolka KR, Energy Management, Commonwealth Publication, New Delhi, 1997 3

Reference:

- 1. Write, Larry C, Industrial Energy Management and Utilization, Hemisphere Publishers, Washington, 1988
- 2. Diamant, RME, Total Energy, Pergamon, Oxford, 1970
- 3. Handbook on Energy Efficiency, TERI, New Delhi, 2001
- 4. Guide book for National Certification Examination for Energy Managers and Energy Auditors (Could be downloaded from www.energymanagertraining.com)

Course Designers:

Course De	Signer St	
S.No	Name of the Faculty	Mail ID
1	R.ANANDAN	Rajanand0072000@yahoo.com
2		
3		

171	AESE02	E	ENER	GY C	ONSE	'RVA	ΓION		Categ	gory	L	Т	Р	Crea	lit
		A	AND N	IANA	GEM	ENT			EC(S	SE)	3	0	0	3	
auditir	m of the	subje	ct is to	o provi	de bas	sic kno	wledg	e of e	nergy	consun	nption,	utilizatio	n and en	nergy	
	se Objec														
1	To com	pare th	e ener	gy cor	nsump	tion de	etails v	vorldv	vide.						
2	Analyzi	ng and	l interp	oretatio	on of e	energy	data i	n indu	stries.						
3	Carrying	g out e	nergy	accou	nting a	and ba	lancin	g.							
4	Conduct	ting en	ergy a	udit a	nd sug	gest n	nethod	ologie	s for e	energy	savings	in vario	us equip	ment.	
5	To utiliz	the the	availat	ole ene	ergy re	source	es in o	ptimal	ways.						
Cours	se Outco	omes:	On th	e succ	essful	comp	letion	of the	cour	se, stu	lents w	vill be ab	le to		
CO1.	To ga energy			vledge	of tl	he bas	ic cor	ncepts	of En	ergy s	cenario	, energy	auditin	g &role	e of
CO2.	To ob	tain th	e meth	ods of	f Elect	ric ma	inagen	nents,	Lighti	ngs					
CO3.	To app	ply the	e conce	epts of	boile	r testi	ng, ste	am dis	stribut	ion & t	hermal	insulator	:S		
CO4.	To app	ply the	e techn	iques	for En	ergy c	onserv	vation	in pun	nps, fai	ns and l	Refrigera	tion		
CO5.	To app	ply the	e techn	iques	for pa	yback	period	l, ener	gy ma	nageme	ent & ir	nternal ra	te of Re	eturn	
Марр	ing with	n Prog	ramm	ne Out	come	s and	Progr	amme	Spec	ific Ou	tcomes	5			
СО	PO1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO12	PSO 1	PSO 2	P S O 3
CO1	S	М	L	М	L	L	-						L	-	-
CO2	S	М	S	М	L	L	L						L	_	-
CO3	S	М	М	L	М	L	М						L	-	-
CO4	S	М	S	М	М	М	L						L	-	-
CO5	S	М	S	М	М	М	L						L	-	-
S- Str	ong; M-	Medi	um; L	-Low	I	I	I	I	<u> </u>	1	1	1	1		L

SYLLABUS : IMPORTANCE OF ENERGY CONSERVATION AND MANAGEMENT

Energy-Power – Past & present scenario of World; National Energy consumption data– environmental aspects – Energy prices, policies – Energy auditing: Need, Types, methodology and analysis. Role of energy managers. Instruments used for auditing.

ELECTRICAL SYSTEMS

AC / DC current systems, Demand control, power factor correction, load management, Motor drives: motor efficiency testing, Variable frequency drives – Lighting: lighting levels, efficient options, day lighting, timers, Energy efficient windows – Advanced fuel cell technology

THERMAL SYSTEMS

Boiler – efficiency testing, excess air control, Steam distribution & use – steam traps, condensate recovery, flash steam utilization, Thermal insulation and refractories. Thermic fluid heaters.

ENERGY CONSERVATION

Energy conservation in Pumps, Fans (flow control) and blowers, Compressed Air Systems, Refrigeration and air conditioning systems – Waste heat recovery recuperators, heat sheets, heat pipes, heat pumps.

ENERGY MANAGEMENT & ECONOMICS

Energy resource management – Energy Management information systems – Computerized energy management – Energy economics – discount rate, payback period, internal rate of Return, life cycle costing – Financing energy conservation Projects.

TEXT BOOKS

- 1. L.C. Witte, P.S. Schmidt, D.R. Brown, Industrial Energy Management and Utilisation, Hemisphere Publications, Washington.
- 2. O. Callaghn, P.W. Design and Management for Energy Conservation, Pergamon Press, Oxford.

Reference Books

- 1. Dryden, I.G.C. The Efficient Use of Energy, Butterworths, London
- 2. Turner, W.C. Energy Management Hand Book, Wiley, New York.
- 3. Murphy, W.R. and Mc KAY, G. Energy Management, Butterworths, London

Course Designers

S.No	Faculty Name	Designation	Department/ Name of the College	Email id
1	R.MAHESH	ASSISTANT PROFESSOR (GR-II)	Mechanical/AVIT	mahesh@avit.ac.in

1714	ECEA		НУ	ZDRO(GEN A	ND FU	JEL C	ELL		Catego	ory	L	Т	Р	Credit
17M	ESE0	5		Т	ECHN	OLOC	θY			EC(SI	E)	3	0	0	3
	lighter	n on v		techno y requi			cemen	ts, bene	efits ar	nd pros	pects o	f utilizi	ing hydro	gen/fuel	cell for
PREF NIL	REQU	ISITE]												
COU	RSE C)BJE(CTIVI	ES											
1	To d	etail o	n the ł	nydroge	n prod	uction	metho	dologie	s, poss	sible ap	plicatio	ons and	various s	torage o	ptions.
2	To d kinet		on the	e worki	ng of a	typical	fuel c	ell, its t	ypes a	ind to e	laborat	e on its	thermody	ynamics	and
3	To a	nalyze	the co	ost effe	ctivene	ess and o	eco-fri	endline	ss of I	Fuel Ce	lls.				
4	To n	nake st	udent	s under	stand t	he diffe	rent fu	el cells	and th	neir app	lication	ns.			
5					dersta	nd the e	conon	nics of f	fuel ce	lls.					
COU	RSE C	OUTC	OME	S											
On the	e succe	essful	compl	etion of	the co	ourse, st	udents	s will be	e able	to					
CO1.	Know	the hy	droge	n produ	ction r	nethodo	ologies	and va	rious s	storage	options	8	Underst	and	
CO2.1	Know	the wo	orking	of fuel	cell ar	nd its ty	pes wi	th thern	nodyn	amic pe	erforma	ince.	Underst	and	
CO3.	Under	stand	the co	st effec	tivenes	ss and e	co-frie	endlines	s of fu	el cells	5.		Underst	and	
CO4 .	Know	the di	fferen	t types	of fuel	cells an	nd thei	r applic	ations				Underst	and	
CO5.	Unders	stand t	he eco	onomics	of fue	l cells.							Underst	and	
MAP	PING	WITI	H PR(OGRAN	MME	OUTC	OMES	S AND	PROG	GRAM	ME SF	PECIFI	C OUTC	COMES	
COS	PO 1	PO 2	PO 3	PO4	PO 5	PO6	PO 7	PO8	PO 9	PO1 0	PO1 1	PO1 2	PSO1	PSO 2	PSO3
CO1	М	S	S	S	S	S	S						L		
CO2	S	S	S	М	М	М	L						L		
CO3	М	L			М	М	S						L		
CO4	S	М	М		М	М	Μ						L		
CO5	М	L			L	L	L						L		
S- Str	ong; N	M-Me	dium;	L-Low	7										

HYDROGEN – BASICS AND PRODUCTION TECHNIQUES: Hydrogen – physical and chemical properties, salient characteristics. Production of hydrogen – steam reforming – water electrolysis – gasification and woody biomass conversion – biological hydrogen production – photo dissociation – direct thermal or catalytic splitting of water.

HYDROGEN STORAGE AND APPLICATIONS:Hydrogen storage options – compressed gas – liquid hydrogen – Hydride – chemical Storage – comparisons. Safety and management of hydrogen. Applications of Hydrogen.

FUEL CELLS:History – principle - working - thermodynamics and kinetics of fuel cell process – performance evaluation of fuel cell – comparison on battery Vs fuel cell.

FUEL CELL – TYPES:Types of fuel cells – AFC, PAFC, SOFC, MCFC, DMFC, PEMFC – relative merits and demerits.

APPLICATION OF FUEL CELL AND ECONOMICS:Fuel cell usage for domestic power systems, large scale power generation, Automobile, Space. Economic and environmental analysis on usage of Hydrogen and Fuel cell. Future trends in fuel cells.

TEXT BOOKS:

- 1. Viswanathan, B and M Aulice Scibioh, Fuel Cells Principles and Applications, Universities Press (2006)
- 2. Rebecca L. and Busby, Hydrogen and Fuel Cells: A Comprehensive Guide, Penn Well Corporation, Oklahoma (2005
- 3. Bent Sorensen (Sørensen), Hydrogen and Fuel Cells: Emerging Technologies and Applications, Elsevier, UK (2005)

REFERENCES:

- 1. Kordesch, K and G.Simader, Fuel Cell and Their Applications, Wiley-Vch, Germany (1996)
- Hart, A.B and G.J.Womack, Fuel Cells: Theory and Application, Prentice Hall, New York Ltd., London (1989)
- 3. Jeremy Rifkin, The Hydrogen Economy, Penguin Group, USA (2002).

COUI	RSE DESIGNERS			
S.No ·	Name of the Faculty	Designation	Department / Name of the College	Mail ID
1	SHIVAKUMAR N	Asst. Prof II	Mechanical, AVIT	shiva.thermal@gmail.com

17MESE04		Category	L	Т	Р	Credit
	OF ENERGY	EC(SE)	3	0	0	3

Preamble

Renewable source of energy are developing fast throughout the world, and their combination is increasingly able to meet the needs for available, agreeable, and affordable energy, also for the people that lack access to energy today. In addition, local energy resources are not hit by the high energy price increases that are threatening to reverse the progress in providing energy to the poor people that lack appropriate energy today. This is why sustainable energy, the combination of renewable energy and energy efficiency, is increasingly become a part of the efforts to reduce poverty.

Prerequisite - NIL

Course Objective

1	To und							y.							
2	To lear	n the in	mporta	ance of	f wind	energ	y.								
3	To kno	w the i	import	ance c	of bio e	energy	•								
4	To kno	w vari	ous rei	newab	le ener	rgy po	wer pl	ants.							
5	To lear	n the n	iecessi	ty of l	atest a	nd mo	dern e	energy	source	es.					
Cour	se Outo	comes:	On th	e suce	cessfu	l comj	oletior	n of th	e coui	rse, stu	lents w	vill be a	able to		
CO1.	ther	mal col	llector	5						radiatio			apply		
CO2.	To a syste		wind o	data ,e	energy	estin	nation	and v	wind e	energy	convers	sion a	apply		
CO3.		To apply the Biomass directs Combustion, Biomass gasifier and Biogas apply plant.													
CO4.		pply the opply t			ergy ,0	Open a	and cl	osed (DTEC	Cycles	and Sr	nall a	apply		
CO5.		apply nologie		powe	er gen	eratio	n, tra	nsport	; , Fi	uel cel	ls and	its a	apply		
Map	ping wi	th Prog	gramn	ne Ou	tcome	es and	Prog	ramm	e Spec	cific Ou	tcomes	5			
СО	PO1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PS O3
CO1	М	Μ	М	-	-	-	-	-	-	-	-	-	М		
CO2	S	М	М	-	-	-	-	-	-	-	-	-	М		
CO3	S	М	М	-	-	-	-	-	-	-	-	-	М		
CO4	S	М	М	М	-	-	-	-	-	-	-	-	М		
CO5	S	М	М	М	-	-	-	-	-	-	-	-	М		

S- Strong; M-Medium; L-Low

SOLAR ENERGY

Solar Radiation – Measurements of solar Radiation – Solar Thermal Collectors – Flat Plate and Concentrating Collectors – Solar Applications – fundamentals of photo Voltaic Conversion – solar Cells – PV Systems – PV Applications

WIND ENERGY

Wind Data and Energy Estimation – wind Energy Conversion Systems – Wind Energy-Generators and its performance – Wind Energy Storage – Applications – Hybrid systems

BIO – ENERGY

Biomass, Biogas, Source, Composition, Technology for utilization – Biomass direct Combustion – Biomass gasifier – Biogas plant – Digesters – Ethanol production – Bio Diesel production and economics.

OTEC, TIDAL, GEOTHERMAL AND HYDEL ENERGY

Tidal energy – Wave energy –Open and closed OTEC Cycles – Small hydro plant turbines – Geothermal energy sources- environmental issues.

NEW ENERGY SOURCES

Hydrogen generation, storage, transport and utilization, Applications - power generation- transport – Fuel cells – technologies, types – economics and the power generation

Text Books

1	G.D. Rai, "Non-Conventional Energy Sources", Khanna Publishers, New Delhi, 1999.
2	S.P. Sukhatme, "Solar Energy", Tata McGraw Hill Publishing Company Ltd., New Delhi,1997.

Reference Books

Kelere	ence Books											
1	Godfrey Boyle, "Rene U.K., 1996	wable Energy, Po	ower for a Sustainable H	Future", Oxford University Press,								
2	Twidell, J.W. & Weir,	A., "Renewable]	Energy Sources", EFN S	pon Ltd., UK, 1986								
3	G.N. Tiwari, "Solar Energy Fundamentals Design, Modelling and applications", Narosa Publishing House, New Delhi, 2002											
4	L.L. Freris, "Wind Energy Conversion systems", Prentice Hall, UK, 1990											
Cours	e Designers											
S.No	Faculty Name	Designation	Department/Name of the College	Email id								
1	Raja.s	Assistant Professor	MECH / VMKVEC	raja_slm3@yahoo.co.in								

17 M	ESE05	;		'ASTI CON		ERGY ION		Cate	egory	L		T	Р	Cro	edit
			Т	ECHI	NOLC	ONGY		EC	(SE)	3		0	0		3
Pream	ble														
conv chem	ert ene nical c	ergy f	rom th sion te	nat wa echniq	ste. D	etailed	l stud	y exte	nds to	the m	ethod of	of ther	disposa mo chen nd health	nical an	d bio
energ Prereq			n to wa	aste.											
Course	Obie	ctive													
	, in the second s		the u	vasta a	nd wa	ste pro	<u></u>								
								5.							
2 T	o unde	erstand	d waste	e treati	ment a	nd dis	posal.								
3 T	`o appl	y how	to con	nvert v	vaste t	o energ	gy fro	m ther	mo ch	emical	conver	sion.			
4 T	`o appl	y how	to con	nvert v	vaste t	o energ	gy fro	m bio	chemi	cal con	version				
5 T	'o anal	ysis th	ne envi	ronme	ental ir	npact o	due to	waste	with o	case stu	dy.				
Course	Outco	omes:	On th	e suco	cessfu	l comp	letior	of th	e cour	se, stu	dents w	vill be a	able to		
CO1.	Evol	ainad	tupos	fwoo	to and	source	ofw	asta					understa	nd	
	-		••						1						
CO2.						atment		-					understa	nd	
CO3.		•	onvers		iiques	to con	vert w	aste to) energ	gy by th	ermo		apply		
CO4.		y vari ersion		ethods	to cor	nvert w	aste to	o ener	gy froi	m bio c	hemica	1	apply		
CO5.				ronme	ental a	nd heal	lth im	pacts c	lue to	waste v	with cas	e	analysis		
Mappi	study				tooma	and	Duogu		- Snor	ific Ou	taama				
таррі							0		•				DGO	DGO	Dac
CO	PO1	PO 2	PO 3	РО 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSC 3
CO1	М	L											L		
CO2	S	M	L										L		
CO3	S	М	L										L		
CO4	S	S	М	L									L		
CO5	S	S	S	М									L		
S- Stro	ng; M	-Med	ium; I	L-Low								1			I

INTRODUCTION TO WASTE & WASTE PROCESSING

Definitions, sources, types and composition of various types of wastes; Characterisation of Municipal SolidWaste (MSW), Industrial waste and Biomedical Waste (BMW), waste collection and transportation; waste processing-size reduction, separation; waste management hierarchy, waste minimization and recycling of MSW; Life Cycle Analysis (LCA), Material Recovery Facilities (MRF), recycling processes of solid waste.

WASTE TREATMENT AND DISPOSAL

Aerobic composting, incineration, different type of incineration; medical and pharmaceutical waste incinerations- land fill classification, types, methods and sitting consideration, layout and preliminary design of landfills: composition, characteristics, generation, movement and control of landfill leachate and gases, environmental monitoring system for land fill gases.

ENERGY FROM WASTE-THERMO CHEMICAL CONVERSION

Sources of energy generation, incineration, pyrolysis, gasification of waste using gasifiers, briquetting, utilization and advantages of briquetting,-environmental and health impacts of incineration; strategies for reducing environmental impacts.

ENERGY FROM WASTE- BIO-CHEMICAL CONVERSION

Anaerobic digestion of sewage and municipal wastes, direct combustion of MSW-refuse derived solid fuel, industrial waste, agro residues, anaerobic digestion- biogas production, land fill gas generation and utilization, present status of technologies for conversion of waste into energy, design of waste to energy plants for cities, small townships and villages.

ENVIRONMENTAL AND HEALTH IMPACTS-CASE STUDIES

Environmental and healthimpacts of waste to energy conversion, case studies of commercial waste to energy plants, waste to energy-potentials and constraints in India, eco-technological alternatives for waste to energy conversions - Rules related to the handling, treatment and disposal of MSW and BMW in India. **Text Books**

1Parker, Colin, & Roberts, "Energy from Waste An Evaluation of Conversion Technologies",
Elsevier Applied Science, London, 1985.

2 Shah, Kanti L., "Basics of Solid & Hazardous Waste Management Technology", Prentice Hall, 2000.

Reference Books

1	Robert Green, From Waste to Energy, Cherry Lake Publication, 2009.
2	Velma I Grover and Vaneeta Grover, "Recovering Energy from Waste Various Aspects", Science
	Pub Inc, 2002.

Course Designers

S.No	Faculty Name	Designation	Department/Name of the College	Email id
1	R.CHANDRASEKAR	Assistant Professor	MECH / VMKVEC	chandrasekar@vmkvec.edu.in

1714	IESEO	6	BIO E	NED	су ті	ГСЦА		CV	Ca	tegory	L	Т	Р	C	redit
1/101	LSEU	0	ыог	INCK	GII	LCH	OLU	GI	EC	C(SE)	3	0	0		3
Prean To dis conve	semin				es for 1	utilizir	ng bio-	-energ	y and i	its man	ifold be	enefits co	mpared	l to	
Prere	quisit	e - NI	L												
Cours	se Obj	jective	e												
1	To pro	ovide	the stu	Idents	the so	urces (of bior	nass.							
2	To ma	ake un	dersta	nd the	stude	nts on	differe	ent pro	ocesses	s of bio	methan	ation.			
3	To stu	idy th	e com	oustion	n of bi	o fuels	5,								
4	To stu	idy th	e gasif	icatior	n meth	ods of	biom	ass.							
5	To pr	ovide	the stu	idents	on liqı	uefied	biofue	els.							
Cours	se Out	tcome	s: On	the su	ccessf	ul cor	npleti	on of 1	the co	urse, st	udents	will be a	able to		
CO1.			the kn assessi		ge of t	he bas	sic con	ncepts	of Bio	omass j	orepara	tion and	Unde	rstand	
CO2.	То	obtain	the m	ethods	s of bio	ogas p	roduct	ion an	d biog	as plan	ts.		Unde	rstand	
CO3.	Тоа	apply	the co	ncepts	of cor	nbusti	on pro	ocesses	s and f	uel han	dling s	ystems.	Apply	ý	
CO4.	Тоа	apply	the tec	hniqu	es for	prepar	ation o	of biog	gases a	and coal	s.		Apply	ý	
CO5.	Тоа	apply	the tec	hniqu	es for j	prepar	ation of	of biod	liesels	from v	egetabl	es.	Apply	ý	
Mapp	ing w	ith Pı	ogran	nme C	Outcon	nes an	d Pro	gram	me Sp	ecific (Outcom	ies			
CO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO12	PSO 1	PSO 2	PSO 3
CO1	S	М	L	М	L	L							L	-	-
CO2	S	М	S	М	М	М							L	-	-
CO3	S	М	М	L	М	L							L	-	-
CO4	S	М	S	М	S	S							L	-	-
CO5	S	М	S	М	S	S							L	-	-

SYLLABUS : INTRODUCTION

Biomass: types – advantages and drawbacks – Indian scenario – characteristics – carbon neutrality – conversion mechanisms – fuel assessment studies – densification technologies – Comparison with coal – Proximate & Ultimate Analysis - Thermo Gravimetric Analysis – Differential Thermal Analysis – Differential Scanning Calorimetry

BIOMETHANATION

Microbial systems – phases in biogas production – parameters affecting gas production – effect of additives on biogas yield – possible feed stocks. Biogas plants – types – design – constructional details and comparison – biogas appliances – burner, luminaries and power generation – effect on engine performance

COMBUSTION

Perfect, complete and incomplete combustion - stoichiometric air requirement for biofuels - equivalence ratio - fixed Bed and fluid Bed combustion - fuel and ash handling systems - steam cost comparison with conventional fuels

GASIFICATION, PYROLYSIS AND CORBONISATION

Chemistry of gasification - types – comparison – application – performance evaluation – economics – dual fuelling in IC engines – 100 % Gas Engines – engine characteristics on gas mode – gas cooling and cleaning systems - Pyrolysis - Classification - process governing parameters – Typical yield rates. Carbonization Techniques – merits of carbonized fuels

LIQUID BIOFUELS

History of usage of Straight Vegetable Oil (SVO) as fuel - Biodiesel production from oil seeds, waste oils and algae - Process and chemistry - Biodiesel health effects / emissions / performance. Production of alcoholic fuels (methanol and ethanol) from biomass – engine modifications

TEXT BOOKS

- 1. Tom B Reed, Biomass Gasification Principles and Technology, Noyce Data Corporation, 1981
- 2. David Boyles, Bio Energy Technology Thermodynamics and costs, Ellis Hoknood Chichester, 1984.
- 3. Khandelwal KC, Mahdi SS, Biogas Technology A Practical Handbook, Tata McGraw Hill, 1986

Reference Books

- 1. Mahaeswari, R.C. Bio Energy for Rural Energisation, Concepts Publication, 1997
- 2. Best Practises Manual for Biomass Briquetting, I R E D A, 1997.
- 3. Eriksson S. and M. Prior, The briquetting of Agricultural wastes for fuel, FAO Energy and Environment paper, 1990
- 4. Iyer PVR et al, Thermochemical Characterization of Biomass, M N E S

Course	e Designers			
S.No	Faculty Name	Designation	Department/ Name of the College	Email id
1	R.MAHESH	ASSISTANT PROFESSOR (GR-II)	Mechanical/AVIT	mahesh@avit.ac.in

17MESE07	NUCLEAR POWER ENGINEERING	Category	L	Т	Р	Credit
	ENGINEEKING	EC(SE)	3	0	0	3

Preamble

Nuclear engineering is the branch of science that deals with theory of nuclear fission and fusion, nuclear reactors and preventive maintenance such as protection from radiation. In order to understand the construction and operation of nuclear reactors, it is necessary to have a basic grounding in atomic physics. The course provides a fundamental knowledge in nuclear power generation and nuclear power plant operation.

11010	equisite	- NIL													
Cour	se Obj	ective													
1	To des	cribe tl	he mec	hanisı	ns of 1	nuclea	r fissio	on and	fusio	n reactio	ons.				
2	To exp	lain th	e vario	ous nuo	clear fu	uel cyo	cles an	d its c	haract	eristics					
3	To dis	cuss the	e repro	cessin	g met	hods o	f nucl	ear spe	ent fue	el.					
4	To stu	dy sepa	ration	of rea	ctor p	roduct	s								
5	To des	cribe tl	he vari	ous sa	fety sy	stems	and d	isposa	l metł	nods of	nuclear	wast	es		
Cour	rse Outo	comes:	On th	ne suco	cessfu	l comj	pletior	n of th	e coui	rse, stu	lents w	vill be	able to		
CO1.	Kno	ow the 1	nuclear	r fissic	on and	fusior	n proce	esses					Understa	und	
CO2.	Exp	lain the	e vario	us nuc	lear fu	iel cyc	les an	d its cl	haract	eristics			Understa	und	
CO3.	Disc	cuss the	e repro	cessin	g metl	nods o	f nucle	ear spe	ent fue	1			Understa	und	
CO4.	Stuc	ły sepa	ration	of rea	ctor pr	oducts	8						Understa	und	
CO5.	Des was		ne vari	ous sa	fety sy	stems	and d	isposa	l meth	ods of	nuclear		Understa	und	
Map	ping wi	th Pro	gramr	ne Ou	tcome	es and	Prog	ramm	e Spec	cific Ou	tcomes	8			
CO	PO1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO 2	1 PSO 1	PSO 2	PSO 3
CO1	М	L	L										L		
CO2	S	М	L										L		
CO3	S	М	L										L		
CO4	S	S	М	L									L		
CO5	S	S	S	М									L		
S- St	rong; N	1-Medi	ium; I	L-Low											

NUCLEAR REACTORS

Mechanism of nuclear fission –Nuclides -Radioactivity –Decay chains -Neutron reactions -Fission process –Reactors -Types of reactors –Design and construction of nuclear reactors -Heat transfer techniques in nuclear reactors -Reactor shielding.

REACTOR MATERIALS

Nuclear fuel cycles –Characteristics of nuclear fuels –Uranium –Production and purification of uranium – Conversion to UF4 and UF6 –Other fuels like Zirconium, Thorium, Berylium.

REPROCESSING

Nuclear fuel cycles -Spent fuel characteristics -Role of solvent extraction in reprocessing -Solvent extraction equipment

SEPARATION OF REACTOR PRODUCTS

Processes to be considered -Fuel element dissolution -Precipitation process –Ion exchange -Redox -Purex -TTA –Chelation -U235 -Hexone -TBP and Thorax processes -Oxidative slagging and electro-refining -Isotopes –Principles of isotope separation

WASTE DISPOSAL AND RADIATION PROTECTION

Types of nuclear wastes –Safety control and pollution control and abatement -International convention on safety aspects –Radiation hazards prevention

Text Books

1	Thomas J.Cannoly, "Fundamentals of nuclear Engineering", John Wisley, 2002
2	Collier J.G., and Hewitt G.F, "Introduction to Nuclear power", Hemispherepublishing, New York, 2002.

Reference Books

1	A.E. Walter and A.B. Reynolds (1981), Fast Breeder Reactor, Pergamon Press.
2	M.M. El-Wakil (1971), Nuclear Energy Conversion, Intext Educational Publish.
Course	e Designers

S.No	Faculty Name	Designation	Department/Name of the College	Email id
1	V.K.Krishanan	Asso Prof	Mech / VMKVEC	

2	e ct experin site	nents c		RGY I	AB			EC(SE)	0	0	4		2
To conduct Prerequis NIL Course O 1 To i 2	et experin site	nents c	n voriou											
NIL Course O			on various	s Energ	gy Eng	gineeri	ing dev	vices to	o study t	he perfo	ormance	e and its	applica	ations.
Course O	bjective													
2														
2														
- To a			in solar w											
3 т		-	cal trainir		-	-	-							
103	apply the	practio	cal trainir	ng by v	various	s pump	p and i	ts cha	racteristi	cs				
	study and	l apply	for perfo	rmanc	e anal	ysis ar	nd opti	mizati	ion of en	ergy uti	ilities			
5 To s	study the	Perfor	mance or	ı vario	us Hea	at Exc	hangei	S						
Course O	utcomes	: On tl	he succes	sful c	omple	tion o	f the c	ourse	, studen	ts will k	be able	to		
CO1. U	nderstan	d the w	orking pi	rincipl	e of di	fferen	t renev	vable	energy s	ources.			Appl	У
CO2. M	leasure th	ne prop	erties of	differe	nt fue	ls.							Appl	у
CO3. A	pply the	practic	al trainin	g by v	arious	pump	and it	s char	acteristic	s			Appl	у
	rocedure	to be a	dopted fo	or perf	orman	ce ana	lysis a	nd op	timizatio	n of en	ergy		Appl	У
CO5. T	o study tl	ne Perf	ormance	on va	rious I	Heat E	xchan	gers					Appl	у
Mapping	with Pro	ogram	me Outco	omes a	and Pr	ograr	nme S	pecifi	c Outco	mes				
CO PC	01 PO 2	PO 3	PO4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10	PO1 1	PO1 2	PSO 1	PSO 2	PSO3
CO1 S	S	-	-	-	-	-	-	-	-	L	-	L		
CO2 S	L	S	L	-	-	-	-	-	-	L	-	L		
CO3 S	L	-	L	-	-	-	-	-	-	М	-	L		
CO4 S	M	L	-	-	-	-	-	-	-	М	-	L		
CO5 L	L L	L	-	-	-	L	-	-	-	L	-	L		
S- Strong	• M-Mer	lium• 1	L-Low											

LIST OF EXPERIMENTS

1.	Performance	study	in a	solar	water	heater.
----	-------------	-------	------	-------	-------	---------

- 2. Characteristics study of solar photovoltaic devices.
- 3. Performance study of biogas plant.
- 4. Fuel characterization study in different fuels (proximate analysis, calorific value, viscosity, specific gravity etc.,)
- 5. Measurements of direct and diffused solar radiation.
- 6. Performance study on boiler.
- 7. Performance characteristics of motor test rig.
- 8. Computation of pump & pumping system characteristics (pump curve, system curve and BEP)
- 9. Analysis on fans characteristic curves
- 10. Performance study on various Heat Exchangers.
- 11. Performance characteristics of Vapour Compression Refrigeration test rig.
- 12. Study on fuel cell Systems.
- 13. Study on thermal storage systems
- 14. Study on biomass gasifiers.
- 15. Study on various alternate fuels for IC engines

Text Books

1

ENERGY LAB Manual

Reference Books

1	Twidell, J.W. & Weir, J	A., "Renewable Ei	nergy Sources", EFN	Spon Ltd., UK, 1986
2	G.N. Tiwari, "Solar En House, New Delhi, 200		s Design, Modelling a	nd applications", Narosa Publishing
Cours	se Designers			
			Department/	
S.No	Faculty Name	Designation	College	Email id

17MF	SE63		ALTE	ERNATE	FUE	L TES	TING	÷	Cate	gory	L	Т	Р	C	redit
	LSE 82]	LAB				EC(SE)	0	0	4		2
Prean To im		owled	ge on	performa	nce an	d emis	sion c	haract	teristic	s on pe	trol and	diesel e	engine.		
Prere NIL	equisite	e													
	se Obj	ectiv	e												
1	To fam	iliariz	te and	train the s	tuden	ts on th	e how	to ch	eck V	CR eng	gine perf	formanc	e		
2															
Cour	se Out	come	es: On	the suc	cessfu	ıl com	pleti	on of	the co	ourse, s	student	s will l	oe able	to	
CO1.	Anal	ysis ai	nd perf	formance	testing	g of dif	ferent	oil us	ed in	VCR en	gine			Appl	у
CO2.				formance	testing	g of Al	ternat	e Fuel	using	by diffe	erent con	nponen	t	Appl	У
CO2. in VCR engine CO3. Evaluate the function of Emmision gas testing and measurements by Gas Analyzer Evaluate															
Map	ping w	ith P	rogra	mme Ou	tcom	es and	l Pro	gram	me Sj	pecific	Outcor	nes			
CO	PO	PO	PO	PO4	PO	PO	PO	PO	PO	PO1	PO1	PO1	PSO	PSO	PSO
CO1	1 S	2 S	3	-	5	6	7	8	9 S	0	1	2	1 S	2	3
CO2	S	L	S	L	М	-	-	-	M	-		-	S		
CO3	S	S	-	L	М	-	-	-	S	-		-	М		
S- Sti	rong; N	A-Me	edium	; L-Low	7	II						I	I		1
SVU	LABUS	3													
	OF E		RIMF	INTS											
1.				on VCR	engin	e usino	alter	nate fu	el in d	lifferent	loads				
2.					Ũ							ison rai	io		
 Performance Test on VCR engine using alternate fuel in different comparison ratio. Performance Test on VCR engine using alternate fuel in EGR 															
 Performance Test on VCR engine using alternate fuel in Turbo Charger 															
 Ferformance Test on VCR engine using alternate fuel in different Nuzzle hole 															
	 Measurement of HC, CO, CO₂, O₂ using exhaust gas analyzer. 														
0. 7.				noke Mea			o van	and g	unu						
8.		-		as Analyz											
0.	Study			as i maryz		. I ID.									

9.	9. Study of Chemiluminescent NOx Analyzer												
Text I	Text Books												
1	ALTERNATE FUEL TESTING LAB Manual												
Refer	ence Books												
1	R.B. Gupta- "Automobile Engineering "- SatyaPrakashan												
2	Ganesan, V- "Internal G	Combustion Engines"	² - Tata McGraw-Hill	Со 2003.									
Cours	rse Designers												
S.No	Designation Department/ College Email id												
1	SAMUVEL MICHAEL Asso.Prof Gr-II MECH/AVIT samuvelmichael@avit.ac.in												

ELECTIVE COURSES

SPECIALIZATION - INDUSTRIAL ENGINEERING

17MI	ESE38				STRL			Cate	egory	L		Т	Р	Cr	edit
1/1/1			E	NGIN	EERI	NG		EC	(SE)	3		0	0	í	3
Pream										1					
	course									d study	y techr	niques	, work 1	neasure	ment,
Prerec	-	umme	, und e	onuor	and n	lausui	ui Leg	,1514110							
NIL	o Obła														
,	e Obje		tha it	nnorte	nce	fwork	etudy	math	ode an	d ite im	portano	o in v	prious fie	Ide	
1	To understand the importance of work study methods and its importance in various fields.														
2 7	To deve	o develop the skills of selection of a plant and also material handling equipment required.													
3 7	To lear	learn PPC and its functions.													
4	To lear	learn the skills of purchasing materials and their management.													
5	To lear	n the a	waren	ess on	vario	us labo	our act	s and	manag	ement	principl	les.			
Cours	rse Outcomes: On the successful completion of the course, students will be able to														
CO1.						rough							Understa	and	
						U									
CO2.	Estal	Establish the efficient work system Apply													
CO3.	Iden	Identify the suitable forecasting techniques for given applications Analyze													
CO4.	Prep	are the	charts	s, diag	rams a	and pro	oductio	on pla	n.				Apply		
CO5.	Desc	ribe th	e theo	ry in i	ndustr	ial eng	gineeri	ing and	d their	applica	tions.		Apply		
Mappi	ing wit	h Pro	gramr	ne Ou	tcome	es and	Prog	ramm	e Spec	ific Ou	tcomes	5			
	_	РО	РО	РО	РО	PO	PO	РО	PO	PO1	PO1	PO1	PSO	PSO	PSO
СО	PO1	2	3	4	5	6	7	8	9	0	1	2	1	2	3
CO1	S	_	_		_	-		_	_	_	_	_		_	_
		-		-	-	-	-		-	-		_			_
CO2	S	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO3	S	М	М	L	S	-	-	-	-	-	-	-	М	-	S
CO4	S	М	М	L	-	-	-	-	-	-	-	-	М	-	М
CO5	S	S	S	S	S	-	-	-	S	М	-	-	S	-	S
S- Stro	ong; M	-Medi	ium; I	L-Low		1		1	1		1	1	_1	1	1

WORK MEASUREMENT AND WORK STUDY

Evolution and importance of industrial engineering–Production-Classification-Productivity- Factors influencing productivity-quality route to productivity- Introduction to Work measurement and its Techniques-Work study-Definition-Procedure and benefits of work study-Charting techniques-Time study-Stop watch time study-Motion study-Work sampling procedure-collection of data-Method study.

PLANT LAYOUT AND MATERIAL HANDLING9 Hours

Plant location and site location-factors influencing the location-Plant layout-Types, needs, factors influencing the plant layout-Plant layout procedure-Material handling-scope and principles of material handling-Types of Material Handling equipment-Factors influencing material handling-Methods of material handling.

PRODUCTION PLANNING AND CONTROL

Introduction-Objectives and Functions of PPC-Forecasting-Sales Forecasting Techniques-Types of Forecasting-Routing-Objectives and procedure of routing-Scheduling-Master Production Schedulepurpose and preparation of schedules-Scheduling techniques like CPM and PERT- Dispatching-Dispatch Procedure-Centralized and Decentralized dispatching-Tool dispatching

MATERIAL MANAGEMENT

Procurement of materials-codification of materials-Inventory control-Objectives of inventory control-EBQ & EOQ values-Inventory models-ABC analysis-Material requirements planning(MRP)-Enterprise resource planning(ERP)-supply chain management(SCM)-Inspection and quality control-SQC-control charts-Sampling procedures-Benchmarking

INDUSTRIAL LEGISLATION AND MANAGEMENT CONCEPTS9 Hours

Importance and necessity of labour acts-principles of labour legislation-various acts-Industrial Ownership and various types-Functions of management-Manpower Planning-Recruitment and Selection-Break Even Analysis-Managerial applications of breakeven point-Decision making -Techniques of decision making.

Text Books:

1	Khan, M.I, "Industrial Engineering", New Age International, 2nd Edition, 2009.
2	Kapoor N.D, "Handbook of Industrial Law", sultan Chand & sons, 14th revised edition 2013.

Reference Books:

1	Khanna, O.P, " Ind	Khanna, O.P, "Industrial Engineering and Management", Dhanpat Rai and Sons, 2008.											
2	,	Samuel Eilon, "Elements of Production Planning and Control", Universal Publishing Corporation, Bombay, 1994.											
3	Panneerselvam R,	"Production and	Operations Managem	ent", PHI, New Delhi, 2006.									
Cours	se Designers												
Sl.No	Faculty Name	Designation	Department/Name	Email id									

Sl.No	Faculty Name	Designation	Department/Name of the College	Email id
1	B.SELVA BABU	Assistant Professor	Mech / AVIT	selvababu@avit.ac.in

9 Hours

9 Hours

17M	ESE39	,	LI	EAN N				NG	0	Categor	y L	L T P			it
1/101					SYST	TEMS				EC(SE)	3	0	0	3	
Pream This co		rovide	es basi	c knov	vledge	e in va	rious t	cools a	nd tec	hniques	in lean	manu	facturing	g system	s.
Prerec	quisite	– NIL	4												
Cours	e Obje	ctive													
1	To gair	n the k	nowle	edge ar	nd und	erstan	ding t	he bas	ic con	cepts of	lean m	anufa	cturing p	rocess	
2	To und	erstan	d the	variou	s quali	ty im	proven	nent m	ethod	s in lear	n manuf	acturi	ng.		
3 ′	To lear	n the	basic c	concep	ots of J	IT and	d VSM	1.							
4	To ana	lyse th	ne imp	ortanc	e of JI	DOK	A and	its rol	е.						
5	To und	erstan	d the i	import	ance o	of emp	loyee	involv	ement	and sy	stemati	c plan	ning.		
Cours	e Outc	omes	: On t	he suc	cessfu	ıl com	pletio	n of tl	ne cou	rse, stu	dents v	vill be	able to		
CO1.										pts in le			U	Unders	
CO2.				-		-				quality	_			Analys	se
CO3.	O3. Understand the JIT methodology, Kanban rules and the importance of defining Apply value.														
CO4.															
CO5.	CO5. Learn the requirement of employee involvement in the implementation of lean Apply culture.														
Mappi	ing wit	h Pro	gram	me Oı	ıtcom	es and	l Prog	gramn	ie Spe	cific O	ıtcome	s			
СО	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3
CO1	M	L	S	L	S	L	-	-	-	-	-		M		
CO2	М	L	S	L	S	L	-	-	-	-	-		М		
CO3	М	L	S	L	S	L	-	-	S	-	-		S		
CO4	М	L	S	L	S	L	-	-	S		-		S		
CO5	М	L	S	L	S	L	-	L	S		-		S		
S- Stro	ong; M	[-Med	ium;	L-Lov	v			1	1	11					
SYLL	ABUS														
				IN	TROI	DUCT	ION								
produc		stem -	– Nece	essity -	– Lean	revol	ution	in Toy	ota – S				ng-Origir thinking		
		1								STEM					
Standa standa	rdized			ement		f s		dized	W	m–Tota ork–Cha	irts		define	Mainter standa	
work-	Man po	ower r	educti	on–Ov	erall e	efficie		tandaro F IN T		work an	d Kaize	en–Co	mmon la	youts.	
				-Princ											

- Prod	- Production leveling - Pull and Push systems - Process Mapping and Value stream mapping											
	JIDOKA (AUTOMATION WITH A HUMAN TOUCH)											
Jidoka		ka-Yoke (mistake		stems – Inspection systems and								
zone co	ontrol – Types and us											
	WORKER INVOLVEMENT AND SYSTEMATIC PLANNING											
		METHOD	OLOGY									
Involve	ement – Activitie	es to support i	nvolvement –	Quality circle activity - Kaizen								
trainin	ing - Suggestion Programmes – Hoshin Planning System (systematic planning											
method	dology) - Phases of H	Hoshin Planning – L	ean culture									
Text B	looks											
	Pascal Dennis, Lea	n Production Simpli	fied: A Plain-Lang	guage Guide to the								
1				on), Productivity Press,New York.								
•	Mike Rother and Jo	ohn Shook, Learning	to See: Value Str	eam Mapping to Add Value and								
2	Eliminate MUDA,	Lean Enterprise Inst	itute.									
Refere	ence Books											
-	Jeffrey Liker, the T	oyota Way: Fourtee	n Management Pri	inciples from the World's Greatest								
1	Manufacturer, McC	•	e									
	Michael L. George	, Lean Six SIGMA	: Combining Six S	SIGMA Qualities with Lean Production								
2	Speed, McGraw Hi		e	-								
Course	e Designers											
			Department/									
S.No	Faculty Name	Designation	Name of the	Email id								
	-	_	College									
1	J.SENTHIL	Associate	Mech / AVIT	jsenthil@avit.ac.in								
1		Professor										

17M	ESE4	0	INS			ND STA		TICAI	4	Categ	ory	L	Т	Р	Credit
1/141	LOLT	0		QUA	LITY	CONI	ROL			EC(S	SE)	3	0	0	3
PREA	MBL	E												1	
			U		erstan	d the in	spectio	on and	statist	ical qu	ality con	trol co	ncepts.		
PRER	REQU	ISITE	E - NII												
COUI	RSE O)BJE(CTIVI	ES											
1	To u	nderst	and th	e vario	ıs insp	ection p	orincip	les							
2	To e	xplore	the in	nportan	ce of Q	Quality i	in indu	ıstry							
3	To study the fundamentals of statistical concept in quality control														
4	To explore the phenomenon of various control charts														
5	To study the OC curves and about the sampling inspection														
COUI					2 (1										
On the	e succe	essiul	compl	etion of	the co	ourse, st	udents	s will t	be able	e to					
CO1.	Under	stand	the pri	inciples	of ins	pection	•						Unders	tand	
CO2.	Identit	fy the	qualit	y syster	n in in	dustry.							Apply		
CO3.	Identi	fy the	variou	is contro	ol char	ts.							Apply		
CO4 .	Analy	ze the	OC ci	urves ai	nd the	samplin	g insp	ection	•				Analyz	e	
CO5.	Apply	vario	us san	npling t	echniq	ues							Apply		
MAP	PING	WITI	H PR(OGRAN	MME	OUTC	OMES	S AND	PRO	GRAN	1ME SP	ECIF	COUT	COMES	
COS	PO 1	PO 2	PO 3	PO4	PO 5	PO6	PO 7	PO 8	PO 9	PO1 0	PO11	PO1 2	PSO1	PSO2	PSO3
CO1	М					L							L		
CO2	М					L							L		
CO3	М		М										L		
CO4	Μ				S								L		
CO5	М	М	М	М	М								L		
S- Str	ong; N	A-Me	dium;	L-Low	7										
SYLL	ABUS	5													

INSPECTION: Introduction and Definition of Inspection, Principle of Inspection, Floor Inspection - advantages and disadvantages.

QUANTITY FUNCTION IN INDUSTRY:

Introduction, definition of quality, basic concept of quality, Quality of design, conformance and performance. Factors affecting quality, Concept of reliability and maintainability, definition of SQC, benefits and limitation of SQC.

FUNDAMENTALS OF STATISTICAL CONCEPT IN QUALITY CONTROL:

Variation in process causes of variation, Types of quality characteristics: variable, attribute and variable treated as attribute, Terminology used in frequency distribution, Graphical presentation of frequency distribution (Histogram, Frequency Bar Chart, and Frequency Polygon), Normal distribution Curve - Description and its construction.

CONTROL CHARTS IN S.Q.C.:

Theory of control chart- uses of control chart – Control chart for variables – X chart, R chart and σ chart -process capability – process capability studies and simple problems. Control chart for attributes -p chart, C and U charts, State of control and process out of control identification in charts, pattern study.

SAMPLING INSPECTION & OC CURVES

Lot by lot sampling – types – probability of acceptance in single, double, multiple sampling techniques – O.C. curves – producer's Risk and consumer's Risk. AQL, LTPD, AOQL concepts-standard sampling plans for AQL and LTPD- uses of standard sampling plans.

TEXT BOOKS:

- 1. Douglas.C. Montgomery, "Introduction to Statistical quality control", 4th edition, John Wiley 2001.
- 2. Srinath. L.S., "Reliability Engineering", Affiliated East west press, 1991.
- 3. R K Jain, "Engineering Metrology", Khanna Publishers.

REFERENCES:

- 1. John.S. Oakland. "Statistical process control", 5th edition, Elsevier, 2005
- 2. Connor, P.D.T.O., "Practical Reliability Engineering", John Wiley, 1993
- 3. Grant, Eugene .L "Statistical Quality Control", McGraw-Hill, 1996
- 4. Manohar Mahajan, "Statistical Quality Control", Dhanpat Rai & Sons, 2001.

COURSE DESIGNERS

S. No.	Name of the Faculty	Designation	Department / Name of the College	Mail ID
1	G.ANTONY CASMIR	Asst. Prof II	Mechanical, AVIT	antonycasmir@avit.ac.in

17	MESI	E 41		INTE					Ca	tegory	L	Т	Р	C	redit	
			MA	NAGE	CMEN	Т			E	C(SE)	3	0	0		3	
Prear The a		the sub	oject is	s to pro	ovide l	basic k	nowle	edge of	f Mair	tenance	e and sa	afety ab	out indus	stries		
			5	I				0				2				
Prere NIL	quisit	e														
Com																
	se Obj			maint	enanc	e svste	ems									
1						<u> </u>		and co	ntrol s	ystems						
2		-								-						
5		•		•			ainten		nonito	oring						
7				-	-		ndustr									
5	To lea	arn abo	out the	total j	produc	ction n	naintei	nance	systen	18						
Cours	se Out	tcome	s: On	the su	ccessf	ul cor	npleti	on of t	the co	urse, st	udents	will be	e able to			
CO1.				basic anager		ents of	main	tenanc	e syst	em and	functi	on of	Unders	tand		
CO2.	Kn	ow the	e syste	matic	metho	od of n	nainter	nance	planni	ng and	control		Apply			
CO3.	Kn	ow the	e opera	ating a	nd shu	ıtdowı	n main	tenand	ce of l	ogistics			Apply			
CO4.	Kn	ow the	e safet	y meas	sures a	and rel	iabilit	y of m	ainten	ance			Apply			
CO5.	Kno	ow the	funda	imenta	l of to	tal pro	oductiv	ve mai	ntenar	ce syst	ems		Apply			
Mapp	oing w	ith Pr	ogran	nme C	Outcon	nes an	d Pro	gram	me Sp	ecific (Outcom	ies				
СО	PO 1	PO	PO 3	PO 4	PO 5	PO	PO 7	PO 8	PO 9	PO1	PO1	PO12	PSO	PSO	PSO	
CO1	1 S	2 L	L	4 L	L L	6 L	/	8	9	0	1		1 L	2	3	
													L			
CO2	S	М	L	L	L	L							L	-	-	
CO3	S	М	М	М	L	L								-	-	
CO4	S	S	S	М	L	М							L	-	-	
CO5	S	S	S	М	М	М							L	-	-	
S- Str	ong; I	l M-Me	dium	 : L-Lո	w									<u> </u>		
5 54	. , 1		aruili	,												

INTRODUCTION

Basic elements of maintenance system – inspection, planning & scheduling, job execution, record keeping, data analysis, learning & improvement. Maintenance objectives and Scope – Challenges and functions of Maintenance management

MAINTENANCE PLANNING AND CONTROL

Establishing a Maintenance Plan - Preliminary considerations, Systematic method of Maintenance Plan and schedule planning and schedule of Plant shut downs

MAINTENANCE LOGISTICS

Preventive, operating and shutdown maintenance; Condition based maintenance and condition monitoring –Resource requirements: Optimal size of service facility – Optimal repair effort — Spares control.

OVERVIEW OF SAFETY

Five Zero concept –FMECA – Maintainability prediction– Design for maintainability – Reliability Centered Maintenance

TOTAL PRODUCTIVE MAINTENANCE

TPM fundamentals – Chronic and sporadic losses – Six big losses — TPM pillars– Autonomous maintenance – computer-aided maintenance management system

TEXT BOOKS

- 1. Bikas Badhury & S.K.Basu, "Tero Technology: Reliability Engineering and Maintenance Management", Asian Books.
- Seichi Nakajima, "Total Productive Maintenance", Productivity Press

Reference Books

1.Industrial Maintenance – H.P.Garg

2. Andrew K.S.Jardine & Albert H.C.Tsang, "Maintenance, Replacement and Reliability", Taylor and Francis

Course Designers

S	.No	Faculty Name	Designation	Department/ Name of the College	Email id
1		K.SURENDRABABU	ASSOCIATE	Mechanical/AVIT	ksbtkm@gmail.com
		_	Professor		

17MF	ESE42		DESI	GN FO	RQU	ALITY	2		tegory	<u>L</u> 3		T 0	P 0	C 3	-
PRE	AMBLI							<u> </u>	C(SE)	<u> </u>		U	<u> </u>	3	-
			the st	atistica	l techn	iones (designi	no vari	ious ex	perimen	ts and	special ex	perimer	uts and	
optim	ization	technic	ques	ansnea		Iques,	10515111	115 vui i	000 041		.5 4116	special en	permen	to uno	
	REQUI														
COUI	RSE OF	3JECT	IVES												1
1				0.1	•		•			techniqu	es				1
2	To U	To Understand single factor & multi factorial experiments													1
3	To know about factorial designs											1			
4	To know about the Selection of orthogonal arrays											1			
5	Princ	Principles of robust design											1		
COUI	RSE OU	UTCON	MES												1
On the	e succe	ssful co	omplet	ion of t	he cour	rse, stu	dents v	vill be a	able to						-
The v	arious s	statistic	al tech	niques	·							Understar	nd		1
CO2.	design	n single	e factor	& mul	ti facto	orial ex	perime	nts				Apply			1
CO3.	specia	ıl desig	ns in fr,	actorial	experi	ments						Apply			1
CO4 .	To de	esign or	rthogor	nal exp	erimen	its	·					Analyze			
CO5.	To de	sign ro	bust d	lesign a	and ho	w to or	otimize	those	data			Analyze			-
											I				-
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1	1 PO12	PS01	PSO2	PSO:
CO1	S	S	S	Μ	Μ	Μ							L		
CO2	S	S	S	Μ	Μ	Μ				<u> </u>			L		
CO3	S	S	S	Μ	Μ	Μ		'	'				L		
CO4	S	S	S	Μ	Μ	Μ		'	'	 	 		L		
CO5	S S	S S	S	M	M	M	<u> </u>	'	<u> </u> '	 	<u> </u>		L		
						TAT				<u> </u>			L		+
	rong M	-Medi	um L	- Low											_
Syllab															
	RODUC														
	•					•			•			ning of exp	•		
0	•	•		0.	•	robabi	lity plo	t, Anal	ysis of	variance	e, Line	ear regress	ion mod	lels.	
FAC?	TORIA	L EXI	PERIN	IENTS	F										
Desig	n and r	unalysis	s of sin	gle fact	or and	multi-f	actor e	xperim	ients, te	ests on p	neans	EMS rule	;S		

SPECIAL DESIGNS

2 K Factorial designs, Fractional factorial designs, Nested designs, Blocking and Confounding.

ORTHOGONAL EXPERIMENTS

Selection of orthogonal arrays (OA's), OA designs, conduct of OA experiments, data collection and

analysis of simple experiments, Modification of orthogonal arrays

ROBUST DESIGN

Variability due to noise factors, Product and process design, Principles of robust design, objective

functions in robust design - S/N ratios, Inner and outer OA experiments, optimization using S/N ratios,

fraction defective analysis, case studies

Text Books:

- 1. Krishnaiah, K. and Shahabudeen, P. Applied Design of Experiments and Taguchi Methods, PHI learning private Ltd., 2012
- 2. Douglas C Montgomery, " Design and Analysis of Experiments", John Wiley & Sons Ltd.

Reference:

- 1. Larry B. Barrentine, "An introduction to Design of Experiments A simplified approach", New Age International Publishers, 2010
- 2. Nicolo Belavendram, "Quality by design" Taguchi techniques for Industrial experimentation, Prentice Hall.

Course Designer

S. No.	Name of the Faculty	Designation	Department / Name of the College	Mail ID			
1	Dr.D.Bubesh Kumar	Associate Professor	Mechanical/ AVIT	bubeshkumarmech@gmail.com			

1	714666	42	MANAGEMENT FOR ENGINEERS						Categor	y	L	Т	P	•	С
17MESE43			IVIAINAGEIVIEINI FUK EINGIINEEKS						EC(SE)			0	0)	3
PREA	AMBLE														
				tical tec	chnique	s, desigr	ning vario	us exp	eriments	and spe	cial ex	xperimer	nts and	1	
	ization t REQUIS														
	RSE OF														
				s princi	inles of	manage	ment								
	To understand the various principles of management To explore the prospects of Human resource management														
	To study the principles of production and operations management														
	To study the principles of marketing and financial management														
	To understand the basic principles of TQM urse Outcomes														
			nlation	of the a	ourso	atudanta	will be ob	la to							
	On the successful completion of the course, students will be able to CO1: the basic concepts of management Understand														
				Ũ		co mone	agement				_	nderstand			
			•				agement				_	Iderstan			
					-		-						u		
CO4:	the conc	epts of 1	marketir	ng and f	inancia	l manag	ement				A	oply			
CO5:	the basi	c conce	pts of to	tal qual	ity mar	nagemen	t				Aţ	oply			
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	РО	PO12	PS	PSO	PS
co	roi	102	105	104	105	100	107	108	109	1010	11	1012	01	2	O3
CO1	М	L	-	-	L	М							L		
CO2	М	L	-	-	L	М							L		
CO3	М	L	-	-	L	М							L		
CO4	М	L	-	-	L	М							L		
CO5	М	L	-	-	L	М							L		
S- Str	ong M-	Mediun	n L-Lo)w	•	1								1	
SYLI	LABUS														
INTR	CODUC"	ΓΙΟΝ Τ	O MA	NAGE	MENT										
Mean	ing of	Manag	ement,	Definit	tions of	of Mana	agement,	Chara	cteristic	s of N	lanag	ement,	Mana	gement	Vs.
Admi	nistratio	n. Man	agemen	t- Art,	Scier	nce and	Professi	on. I	mportan	ce of 1	Manag	gement.	Deve	elopme	nt of

Management Thoughts. Principles of Management.

HUMAN RESOURCE MANAGEMENT

The Management Functions, Inter-Relationship of Managerial Functions, Significance of Staffing, Personnel Management, Functions of Personnel Management, Manpower Planning, Process of Manpower Planning, Recruitment, Selection, Training Methods, Communication, Performance Appraisal, Employee Retention, Social Responsibility and Ethics

PRODUCTION AND OPERATIONS MANAGEMENT

Production and Operations Management Definition, Objectives, Functions and Scope, Production Planning and Control; Its Significance, Stages In Production Planning and Control. Brief Introduction to the Concepts of Material Management, Inventory Control; Its Importance and Various Methods.

MARKETING AND FINANCIAL MANAGEMENT

Definition of Marketing, Objectives and Functions of Marketing. Marketing Research - Meaning; Definition; Objectives; Importance; Limitations; Marketing Mix, Objectives of Financial Management, Brief Introduction to the Concept of Capital Structure and Various Sources of Finance

TOTAL QUALITY MANAGEMENT

Introduction , Need for quality, Basic concepts of TQM , Contributions of Various Quality Gurus - Barriers to TQM,

Quality statements, Quality Councils, Quality circles, PDCA cycle, 5S, Kaizen .

Text Books:

1. Ricky W. Griffin, "Fundamentals of Management", Cengage Learning, 7th

edition

2. Aswathappa, "Human Resource Management", Tata McGraw-Hill Education,

6th Edition

3. Panneerselvam, "Production and Operations Management", PHI Learning

Reference:

1. Ramaswamy, "Marketing Management: Global Perspective Indian Context", Macmillan Publications

2.Khan and Jain, "Financial Management" Tata McGraw-Hill Education.

3. Dale H Besterfield, "Total Quality Management" Pearson Education.

Course Designer

S. No.	Name of the Faculty	Designation	Department / Name of the College	Mail ID		
1	Dr.D.Bubesh Kumar	Associate Professor	Mechanical/ AVIT	bubeshkumarmech@gmail.com		

17ME	'SF <i>1</i> 4				IA QU		ГY	C	ategor	y	L	Т	Р	Cr	edit
1/10112	(512-		Ν	ANA	GEM	ENT		E	C(SE))	3	0	0	í	3
Prean This c	n ble ourse pr	ovides	basic	knowl	edge o	of Six :	sigma	conce	pts use	ed in in	dustries				
Preree NIL	quisite														
Cours	se Objec	tive													
1	To Stud	o Study about six sigma stories, and methods of improvement of quality													
2	To unde	o understand basic concept and advanced in belt technologies													
3	To learr	learn about implementation and selection of projects idea													
4	To learr	about	projec	t tools	s and d	lesign									
5	To learr	about	the so	ftware	e techn	ologie	es in si	x sign	na						
Cours	se Outco	omes:	On the	e succe	essful	compl	letion	of the	cours	e, stud	ents wi	ll be abl	e to		
CO1.		to kno oveme		ut the	six sig	gma co	oncept	, stori	es, and	metho	ds of q	uality	Reme	mber	
CO2.	To u techr	ndersta 10logie	and the	conce	epts of	six sig	gma u	sed in	indust	ry and	belt		Under	stand	
CO3.		oply th o knov						ept in 1	used in	i proje	ct selec	tion	Apply		
CO4.	Appl	ying tł	ne diffe	erent s	ix sigr	na too	ls in p	rojects	5				Apply		
CO5.	To k	now at	out th	e softv	vare te	chnol	ogies d	develo	ped in	six sig	ma		Under	stand	
Mapp	ing with	n Prog	ramm	e Out	comes	and I	Progra	amme	Speci	fic Ou	tcomes				
СО	PO1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO12	PSO 1	PSO 2	PSO 3
CO1	М												L		
CO2	М												L		
CO3	М	М	М			М							L		
CO4	М	М	М	М		М							L		
CO5	М		S	S	S	М							L		
S- Str	ong; M	Mediu	ım; L	Low	·	·									

INTRODUCTION TO SIX SIGMA

Introduction to quality, Definition of six sigma, origin of six sigma, Six sigma concept, Critical success factors for six sigma. Six Sigma success stories. Statistical foundation and methods of quality improvement

SIX SIGMA CONCEPT

Six Sigma for manufacturing, Six Sigma for service, Understanding Six Sigma organization, Leadership council, Project sponsors and champions, Black Belt, Green Belts.

METHODOLOGIES

Methodology of Six Sigma, DMAIC, DFSS, Models of Implementation of Six Sigma, Selection of Six Sigma Projects. Selecting projects – Benefit/Effort graph, Process mapping, value stream mapping

PROJECT SELECTION FOR SIX SIGMA

Six Sigma Tools: Project Charter, Process mapping, Measurement system analysis, Hypothesis Testing, Quality Function deployment, Failure mode effect analysis, Design of Experiments

INTRODUCTION TO SOFTWARES FOR SIX SIGMA

Sustenance of Six Sigma, Communication plan, Company culture, Reinforcement and control, Introduction to softwares for Six Sigma, Understanding Minitab, Graphical analysis of Minitab plots

Text Books

1	Michael L. George, Lean Six Sigma, McGraw-Hill
2	Forrest W. Breyfogle III, Implementing Six Sigma: Smarter solutions Using Statistical Methods

Reference Books

1	Ra Geoff Tennant, Six Sigma: SPC and TQM in manufacturing and service, Gower Publishing Co

- 2 Greg Brue, Six Sigma for managers, TMH
- **3** Peter S. Pande, The Six Sigma Way, TMH Team Field book

S.No	Faculty Name	Designation	Department/Name of the College	Email id
1	Mr.S.Kalyanakumar	Asst.Prof Gr- II	Mech / AVIT	kalyanakumar@avit.ac.in
2				

17MI	ESE45		STRA	ATEG	IC Q	UALI	ГҮ	Ca	ategor	y	L	Т	Р	Cro	edit		
1/1011	201243		N	IANA	GEM	ENT		Ε	C(SE))	3	0	0	3			
Preamb This con		o expl	ore the	e strate	egies i	n qual	ity ma	inagen	nent								
Prerequ NIL	uisite																
Course	Object	ive															
1 T	o explo	re the	basics	in stra	ategies	s in qu	ality n	nanage	ement								
2 T	o understand the various concepts in improvement process																
3 T	To understand the phenomenon of productivity and cost of quality																
4 T	o study	the va	arious	tools o	of qual	ity											
5 T	o explo	re the	possib	oilities	of tea	m buil	ding a	and qua	ality av	wards							
Course	Outcor	nes: (On the	succe	essful	compl	etion	of the	cours	e, stud	ents wi	ill be abl	e to				
CO1.						-				-	⁷ manag		Reme	mber			
CO2.						d impo	ortanc	e of C	ontinu	ous Im	provem	ent	Under	stand			
CO3.	Proces To une					vity an	d cost	of qua	lity				Under	stand			
CO4.	To kn	ow at	oout be	ench n	narkin	g and t	o utili	ize var	ious q	uality c	control	tools	Apply				
CO5.	To exp	plore t	the pos	ssibilit	ies of	team b	ouildir	ng and	quality	y awar	ds		Reme	mber			
Марріі	ng with	Prog	ramm	e Out	comes	and I	Progra	amme	Specif	fic Out	tcomes						
СО	PO1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO12	PSO 1	PSO 2	PSO 3		
CO1	М												L				
CO2	М			L									L				
CO3	М				L								L				
CO4	М	М		L	S								L				
CO5	М												L				
S- Stro	ng; M-N	Mediu	ım; L-	Low								I	1	1	1		
SYLLA	BUS																

INTRODUCTION

Quality as a Strategic Decision: Meaning of Strategy and Strategic Quality Management, Mission and Vision Statements, Quality Policy, Quality Objectives, Strategic Planning and Implementation, McKinsey 7s Model, Competitive Analysis, Management Commitment to Quality

CONTINUOUS IMPROVEMENT PROCESS

Process Concept, Meaning and Importance of Continuous Improvement Process, Elements of Continuous Improvement, Juran Trilogy, Kaizen, PDSA Cycle and Other Improvement Strategies, Business Process Reengineering

PRODUCTIVITY & COST OF QUALITY

Defining Productivity, Importance of Productivity, Productivity Factors, Workforce and Productivity, Work study for productivity, Managing Improvement, Cost of Quality, Categories of Cost of Quality, Models of Cost of Quality, Optimising Costs, Preventing Cost of Quality

BENCHMARKING & QUALITY CONTROL TOOLS

Definition of Benchmarking, Reasons for Benchmarking, Types of Benchmarking, Benchmarking Process, Advantages of Benchmarking, Limitations of Benchmarking: Check Sheet, Histogram, Pareto Chart, Cause & Effect Diagram, Scatter Diagram, Control charts.

EMPLOYEE INVOLVEMENT, TEAM BUILDING AND QUALITY AWARDS

Importance of Employee Involvement, Empowerment, Motivation & Theories of Motivation, Suggestion System, Teams in Organisations, Recognition and Rewards, Malcolm Baldrige National Quality Award, Deming Prize-categories-criteria-committee, Rajiv Gandhi National Quality Award- Eligibility requirements- Award categories- Assessment criteria, IMC Ramakrishna Bajaj National Quality Awards, Award categories, Award criteria, Quality Bodies in India, EFQM award

Text Books

1Besterfield, DH, et.al. 2003, Total Quality Management, 3rd edn, Prentice Hall2Goetsch, DL & Davis, B 2006, Quality Management: Introduction to Total Quality Management for
Production, Processing and Services, 5th edn, Pearson

Reference Books

1	Gryna FM 2001, Quality Planning & Analysis, 4 th edn, Jr., McGraw-Hill										
2	Shridhara Bhat K, Total Quality Management – Text and Cases, Himalaya Publishing House,										
Cour	rse Designers										
S.N o	Faculty Name	Designation	Department/Name of the College	Email id							
1	Mr.S.Kalyanakumar Asst.Prof Gr-II Mech / AVIT kalyanakumar@avit.ac.in										
2											

17MES	F16		WC	ORK I	DESIG	N AN	D	Ca	ategory	y	L	Т	Р	Cre	edit
ITTLES	01240]	ERGO	DNOM	IICS		E	C(SE)		3	0	0	í	3
Pream This co used in	urse is c	•							•	and E	rgonon	nics, which	ch are b	oth	
Prereq	uisite -]	NIL													
Course	Object	ive													
	o accura	•	•				azards	(ergoi	nomic	in natu	re) whi	ch are lik	ely to c	ause	
	o desigi						tation	s to fit	emplo	yees.					
	o apply	apply the knowledge, skills and abilities into an industrial based problem.													
	o devel	develop and use of human factor data													
5 T	'o under	stand	about	humai	n body	struct	ure an	ld func	ctions.						
Course	Outco	nos. ()n the		accful	comp	otion	of the	cours	o stud	onts w	ill be abl	e to		
Course		11C5. V	JII UIG	succ	2551 UI	comp			cours	c, stuu					
CO1.	To un	dersta	nd acc	curatel	y reco	gnizin	g and	evalua	ting ha	azards			Under	stand	
CO2.	To un	dersta	nd and	d redes	sign of	tasks	and w	orksta	tions to	o fit en	nployee	es	Under	stand	
CO3.	To so	rt out	the ski	ills in a	solving	g indu	strial b	based p	problem	ns			Apply		
CO4.	To ap	ply the	e knov	vledge	and d	evelop	oing to	used	human	factor	data		Apply		
CO5.	To stu	ıdy ab	out hu	man b	ody st	ructur	es and	functi	ions				Under	stand	
Mappi	ng with	Prog	ramm	e Out	comes	and I	Progra	amme	Specif	ic Out	tcomes				
СО	PO1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO12	PSO 1	PSO 2	PSO 3
CO1	S	L		L			L		-	~			L		
CO2	S	М											L		
CO3	S	S	М	М									М		L
CO4	S	S	М	М									М		М
CO5	S	М		М	М		L						L		S
C C4	ng; M-I	Adia		Lorr										•	•

METHOD STUDY

Various recording techniques like outline process charts, flow process charts, man machine charts, two handed process charts. String diagram, flow diagram, multiple activity chart, simo, cyclo-graphs and chrono-cyclographs; critical examination, development, installation and maintenance of improved method

WORK MEASUREMENT

Introduction & definition, objectives and basic procedure of work measurement; application of work measurement in industries; Time study: basic procedure, equipment needed and methods of measuring time, selection of jobs, breaking a job into elements; numbers of cycles to be timed.

JOB EVALUATION AND INCENTIVE SCHEMES

Starlight line, Tailor, Merrick and Gantt incentive plans. Standard data system; elemental & non-elemental predetermined motion system, work factors system Methods Time Measurement (MTM), MOST

HUMAN FACTOR ENGINEERING

Definition and history of development of human factors engineering, Types & characteristics of manmachine-system. Relative capabilities of human being and machines; development and use of human factor data; information input and processing.

HUMAN PHYSICAL DIMENSION CONCERN

Human body- structure and function, anthropometrics. Anthropometry: body growth and somatotypes. Static and dynamic anthropometry, Stand Posture, Anthropometry landmark: Sitting postures, squatting and cross-legged postures

Text Books

1	M. P. Goover, Work Prentice Hall	Systems and the	Methods, Measurement	and Management of Work, Pearson								
2	Khan MI; Industrial H	Khan MI; Industrial Ergonomics; PHI Learning										
Refe	Reference Books											
1	B. Niebel and Freivalds, Methods standards and Work Design, McGraw-Hill, 2003											
2	Sandera M and Mc Co	ormick E; Human	Factors in Engg and des	ign; MGHill								
3	Currie RM; Work stud	ly; BIM publicati	ions									
Cou	rse Designers											
S. N	o Faculty Name	Designation	Department/Name of the College	Email id								
1	N. Fedal Castro Asst. Prof Mechanical / AVIT fedal@avit.ac.in											

ELECTIVE COURSES

SPECIALIZATION – MANUFACTURING ENGINEERING

1 7 \/	ESE16	IN	יסוומ	FRIAT	TRI	BOLO	v	Cate	gory	L		Т	Р	Cr	edit
1 / 191.	LSEIU	11	DUSI	INIAI		DOLO		EC	(SE)	3		0	0	í	3
		e engir	neering	g conc	epts of	f frictior	n, its	effects	s and c	lifferen	t lubric	ation t	theories a	nd type	s used
Prerec	quisite	NIL													
Cours	e Obje	ctive													
1	To und	o understand the concept of tribology.													
2	To lear	n abou	t the v	various	types	of wear	:								
3	To und	erstanc	l the fi	ilm luł	oricatio	on theor	у								
•						of lubri									
5	To und	erstanc	the v	arious	surfac	ce engin	eerir	ng and	bearir	ng mate	rials.				
Cours	e Outc	omes:	On th	ne suco	cessfu	l compl	etior	n of th	e cour	rse, stud	lents w	vill be	able to		
CO1.				-		epts of					enario		Understa		
CO2.					• •	s of wear				anism			Rememb		
CO3.						film lub			•				Understa		
CO4.				-		e various					• 1		Rememb		
CO5.	Unde	erstanc	the v	arious	surrac	e engin	eerin	ig and	bearin	ig mater	riais.		Understa	ina	
Mappi	ing wit		-	.		es and P	_							r	r
CO	PO1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3
CO1	М					L						L	L		
CO2	М	М			М	L						М	L		
CO3	М	М	L			L						М	L		
CO4	М					L						М	L		
CO5	М	М	L		М	L						М	L		
		-Medi													

SURFACES AND FRICTION

Introduction to the concept of tribology, Tribological problems- Nature of engineering surfaces, Surface topography- Surface profilometer, measurement of surface topography-Contact between surfaces, Sources of sliding Friction- Friction due to ploughing, Friction due to adhesion- Friction characteristics of metals and non-metals -Sources of rolling friction, Stick slip motion -Friction of ceramic materials and polymers-Measurement of friction.

WEAR

Wear and Types of Wear-Simple theory of sliding wear mechanism-Abrasive wear-Adhesive wear-Corrosive wear-Surface fatigue wear situations-Wear of ceramics-Wear of polymers-Wear measurements.

FILM LUBRICATION THEORY

Coefficient of viscosity, Fluid film in simple shear-Viscous flow between very close parallel plates:Tutorials-Lubricant supply, Lubricant flow rate-Cold jacking,Couette flow-Cavitations, Film rupture, oil whirl-Shear stress variation within the film-Lubrication theory by Osborne Reynolds: Tutorials-Pressure fields for full sommerfeld, Half sommerfeld-Reynolds boundary conditions.

LUBRICANTS AND LUBRICATION TYPES

Types of Lubricants-Properties of Lubricants-Testing methods-Hydrodynamic Lubrication-Elastohydrodynamic Lubrication-Hydrostatic lubrication

SURFACE ENGINEERING AND MATERIALS FOR BEARINGS

Classification of Surface modifications and Surface coatings-Surface modifications, Transformation hardening-Surface modifications, surface fusion-Thermo chemical Processes-Surface coatings -Materials for rolling element bearings- Materials for fluid film bearings-Materials for marginally lubricated and dry bearings.

Text Books

1	Bearing Tribology: pri	niciples and app	lications.								
2	Williams.J.A, "Engineering Tribology", Oxford University Press.										
3	GwidonStachowiak, Andrew W Batchelor., "Engineering tribology", Elsevier Butterworth – Heinemann, USA.										
Refere	ence Books										
1	Industrial Tribology: Tribosystems, Friction, Wear and Surface Engineering, Lubrication Hardcover, by Theo Mang, Kirsten Bobzin, Thorsten Bartels										
2	Cameron.A, "Basic Lu	brication Theory	", Longman, U.K.								
3	Neale.M.J. (Editor), "Tribology Handbook", Newnes Butter worth, Heinemann, U.K.										
Course	e Designers										
S.No	Faculty Name Designation Department/Na me of the College Email id										
1	M.SARAVANAN	ASST. PROF	MECH./ AVIT	saravanan@avit.ac.in							

17M	IESE17	M	ODEF	RN MA	ANUF	ACTU	RING	Cate	egory	L		Т	Р	Cr	edit			
1/10				ME	THO	DS		EC	(SE)	3		0	0		3			
mai	s cours	ring p	rocess	es us	ed in	indust		mak	ting p	roducts	. Thes		s of var ts will					
Prere	quisite	- NIL																
Cours	se Obje	ctive																
1	To disc	uss the	e basic	conce	epts va	rious u	nconver	itional	machi	ining pi	rocesse	8						
2	To Der	nonstra	ate the	Mech	anical	energy	basedu	nconv	ention	al mach	nining p	rocess	ses.					
	To Der	nonstra	ate the	Electi	rical ei	nergy b	ased un	conver	ntional	machi	ning pro	ocesse	s.					
5											01		machini	ng proce	esses.			
5	To Der	nonstra	ate the	Therr	nal en	ergy ba	sed unco	onvent	tional	machin	ing pro	cesses						
Cours	se Outc	omes:	On th	ne suco	cessfu	l comp	letion of	f the c	ourse,	, studer	nts will	be ab	le to					
CO1.	Disc	uss the	e basic	conce	pts va	rious u	nconven	tional	machi	ning pr	ocesses	6	Understa	und				
CO2.		onstra	te the	Mecha	nical	energy	based u	nconv	entiona	al mach	ining		Apply					
CO3.		onstra	te the	Electri	ical en	ergy ba	used unc	onven	tional	machin	ing		Apply					
CO4.						Electro	o-Chemi	cal en	ergy ba	ased			Apply					
CO5.		onstra esses.	te the	Therm	al ene	rgy bas	sed unco	nventi	onal n	nachini	ng		Apply					
Mapp	oing wit	h Pro	gramr	ne Ou	tcome	s and l	Program	nme S	pecifi	c Outco	omes							
<u> </u>	DO1	РО	РО	РО	РО	РО	DO7	РО	PO	PO1	PO1	PO1	PSO	PSO	PSO			
CO	PO1	2	3	4	5	6	PO7	8	9	0	1	2	1	2	3			
CO1	М	L	-	-	-	М	S	-	-	-	-	Μ	М	-	М			
CO2	М	L	-	-	-	М	S	-	-	-	-	Μ	М	-	М			
CO3	М	L	-	-	-	М	S	-	-	-	-	Μ	М	-	М			
CO4	М	L	-	-	-	- M S M		М	М	-	М							
CO5	М	L	-	-	-	М	S	-	-	-	-	Μ	M M - M					
S- Str	ong; M	[-Medi	ium; I	L-Low							1	1	1		1			

INTRODUCTION

Unconventional machining Process – Need – classification – Brief overview-merits -demerits-Applications

MECHANICAL ENERGY BASED PROCESSES

Abrasive Jet Machining – Water Jet Machining – Abrasive Water Jet Machining - Ultrasonic Machining. Working Principles & Applications – equipment used – process parameters – MRR - Variation in techniques used.

ELECTRICAL ENERGY BASED PROCESSES

Electric Discharge Machining - working principle and applications – equipments - process parameters - surface finish and MRR- Power and control circuits–Wire cut EDM – working principle and Applications.

CHEMICAL AND ELECTRO-CHEMICAL ENERGY BASED PROCESSES

Chemical machining and Electro-Chemical Machining- Electro Chemical Grinding and Electro chemical Honing-working principle and applications-Process Parameters -Surface finish and MRR -Etchants-Maskants

THERMAL ENERGY BASED PROCESSES

Laser Beam Machining and drilling, Plasma Arc Machining and Electron Beam Machining Working principles & Applications – Equipment –Types - Beam control techniques. Micromachining and Nanofabrication Techniques

Text Books

1	Vijay.K. Jain "Advanced Machining Processes" Allied Publishers Pvt. Ltd.
2	P.K.Mishra, "Non Conventional Machining " The Institution of Engineers (India) Text Books: Series.

Reference Books

Keleit	ence Dooks												
1	Benedict. G.F. "No	Benedict. G.F. "Nontraditional Manufacturing Processes" Marcel Dekker Inc., NewYork											
2	Pandey P.C. and Shan H.S. "Modern Machining Processes" Tata McGraw-Hill, New Delhi.												
3	Paul De Garmo, J.T.Black, and Ronald.A.Kohser, "Material and Processes in Manufacturing" Prentice Hall of India Pvt. Ltd., New Delhi, 8th Edition.												
Cours	e Designers												
S.No	Faculty Name Designation Department/Name of the College Email id												
1	S.PRAKASH Assistant Mech / AVIT prakash@avit.ac.in Professor (Gr-II)												
2													

171/	IESE18	2		AL FO			D	Cat	egory	L	ı -	Т	Р	Cr	edit
		,	JO	INING	PRO	CESS		EC	E(SE)	3		0	0		3
theory detail a	ourse a and ap and also sful we	plication the stu	ons of	metal f	ormin	g. Var	ious 1	netal	formir	ig proc	esses a	nical me nd their ng metallu	analysis	are stu	idied in
	e Obje	ctive													
			sic know	wledge	on fur	ıdamer	ntals o	of meta	al forn	ning					
2 7	Го Und	erstand	the var	rious fo	rming	proces	sses ai	nd its a	applica	ation					
3	Го Acq	uire bas	sic know	wledge	on me	tal joir	ning p	rocess	es						
4	Го Und	erstand	the var	rious m	etal jo	ining p	roces	ses and	d its aj	plicati	on				
5	Го Und	erstand	the we	lding o	f alloy	steels	and n	on-fer	rous n	netals					
Course	e Outco	omes: (On the	success	sful co	mplet	ion of	the co	ourse,	studen	ts will	be able t	0		
CO1.	Expla	in basi	c know	ledge o	on func	lament	als of	meta	l form	ing				Apply	,
CO2.	Expla	in the v	various	forming	g proc	esses a	nd its	applic	ation				τ	Jndersta	ind
CO3.	Expla	in basi	c know	ledge o	n met	al joini	ing pr	ocesse	s					Apply	
CO4.	Expla	in the	various	metal j	oining	g proce	esses a	nd its	applic	ation			τ	Jndersta	ind
CO5.	Expla	inthe w	velding	of alloy	v steels	s and n	on-fe	rrous r	netals				τ	Jndersta	ind
Маррі	ing wit	h Prog	ramme	Outco	mes a	nd Pro	ogran	nme Sj	pecific	e Outco	mes				
СО	PO 1	PO2	PO3	PO4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO12	PSO 1	PSO 2	PSO3
CO1	S	L	L	М	S	S	,	0		0	1		S		
CO2	S	S	М	L	S	М							М		
CO3	S	М	М	М	S	S							М		
CO4	S	М	L	L	S	S							S		
CO5	S	М	L	L	S	S							L		
		-Mediu													

FUNDAMENTALS OF METAL FORMING

Fundamentals of metal forming- Effect of temperatures, speed and metallurgical microstructure on forming processes - Mechanics of Metal Forming.

Yield criteria for ductile metals - Flow theories - strain hardening - recrystallization.

METAL FORMING PROCESSES

Forging Processes Forging Equipment, Forging defects - Types of Rolling mill – processvariables – defects. Types of extrusion - Process variables - Wire drawing - Drawing and Deep drawing – Sheet metal working . High energy rate forming processes.

FUNDAMENTALS OF METAL JOINING

Classification of welding processes: Arc welding power sources, power source characteristiccurves, flux covering, different types of electrodes and their applications, gas welding and cutting, flame characteristics

METAL JOINING PROCESSES

Gas tungsten arc welding process, electrode polarity, shielding gas, use of pulsed arc welding process; gas metal arc welding, mode of metal transfers, pulsed MIG welding process. Submerged arc welding, advantages and limitations. Orbital welding of tubes / pipes; Plasma-arc welding process, transferred and non- transferred arc welding and their applications, plasma cutting, surfacing and applications Working Principle of resistance welding process-spot, seam, projection, upset and flash butt Welding, electro slag and electro gas welding. Radiant energy welding processes - equipment -electron beam welding (EBW) - laser beam Welding (LBW) - applications of EBW and LBW- Friction Steel Welding.

WELDING OF ALLOY STEELS AND NON-FERROUS METALS

Welding of stainless steels, types of stainless steels, overview of joining ferritic and martensitic

types, welding of austenitic stainless steels, Sensitisation, hot cracking, sigma phase andchromium carbide formation, ways of overcoming these difficulties, welding of cast iron.Welding of non-ferrous materials: Joining of aluminium, copper, nickel and titanium alloys, problems encountered and solutions. Defects in welding. Introduction to International Standards and Codes

Text Books

- 1. Narayanasamy, R., "Metal forming technology"2nd Edition, Ahuja Pub.
- 2. R. S.Parmar, "Welding Engineering and Technology" 2nd edition M/s. Khanna Publishers.

Reference Books

- 1. George E.Dieter, "Mechanical Metallurgy",1 edition McGraw Hill book Co.- Koga,.
- 2. William F Hosford and Robert M Caddell" Metal Forming Mechanics and Metallurgy" Third Edition, Cambridge University Press.
- 3. ASM Handbook on Forming and Forging, Vol.14, 9thEdition, ASM International
- 4. BaldevRaj,ShankarV,Bhaduri A K".Welding Technology for Engineers" Narosa Publications.
- 5. "AWS Welding Hand book", 9th edition, Vol-1, "Welding Science and Technology".
- 6. Nadkarni S.V., "Modern Arc Welding Technology", 1st Edition, IBH Publishing.
- 7. Kearns W. H, "Welding Hand Book (Welding Processes)", Volume II and III, 7thEdition,AWS.

S.No	Faculty Name	Designation	Department/ Name of the College	Email id
1	S.ASHOKKUMAR	Asst.Professor G-II	Mech / Avit	Ashokkumar@avit.ac.in

17М	ESE1		PROC	CESS P	LANN	ING A	ND C	OST EST	ГІ	Categ	ory	L	Т	Р	Credit
1/101	LOLI				MA	TION				EC(S	SE)	3	0	0	3
	course	revie		e vario anning.	us stej	os invo	lved i	n proces	s plar	ning c	oncepts	and c	ost estin	nation fo	r various
PRER	EQU	ISITI	E - NIL												
COUI	RSE O	BJE	CTIVI	ES											
1	To ki	now a	ibout V	Vork stu	ıdy, Er	gonom	ics								
2	To u	nders	tand ab	out pro	cess pl	anning	and its	s approac	hes.						
3	To ki	now a	about e	lements	of cos	t estim	ation.								
4	To u	nders	tand v	various	Cost E	stimatio	on met	hods.							
5	То са	alcula	te the t	otal pro	oductio	n cost e	estimat	tion.							
			COMES		the co	urse, st	udents	s will be a	ble to						
			•	ork stud									Un	derstand	
CO2.	Identif	y the	steps i	nvolve	d in pro	ocess pl	anning	5.					Apj	ply	
CO3.	Identit	y the	variou	s eleme	ents of	cost est	imatio	n.					Ap	ply	
CO4.	Apply	the v	arious	cost est	imatio	n meth	ods in	productio	on.				Apj	ply	
CO5.	Calcul	ate th	ne cost	estimat	ion of	various	jobs i	nvolved i	n proc	luction.			Ana	alyze	
MAPI	PING	WIT	H PR(OGRAN	MME (OUTC	OMES	S AND PI	ROG	RAMM	IE SPE	CIFIC	OUTCO	OMES	
COS	PO 1	PO 2	PO 3	PO4	PO 5	PO6	PO 7	PO8	PO 9	PO1 0	PO11	PO1 2	PSO1	PSO2	PSO3
CO1	М												L		
CO2	М	М	L										L		
CO3	М		М			L						1	L		
CO4	М	L	L	L		L							L		
CO5	М	Μ	L	L		L							L		
S- Str	ong; N	/I-Me	edium;	L-Low	7										

WORK STUDY AND ERGONOMICS:

Method study – Definition – Objectives-Motion economy- Principles – Tools and Techniques-Applications – Work measurements- purpose – use – procedure – tools and techniques- Standard time –Ergonomics – principles – applications.

PROCESS PLANNING :

Definition – Objective – Scope – approaches to process planning- Process planning activities – Finished part requirements operating sequencesmachine selection material selection parameters- Set of documents for process planning Developing manufacturing logic and knowledge production time calculation – selection of cost optimal processes.

INTRODUCTION TO COST ESTIMATION:

Objective of cost estimation- costing - cost accounting- classification of cost-Elements of cost.

COST ESTIMATION:

Types of estimates – methods of estimates – data requirements and sources- collection of cost- allowances in estimation.

PRODUCTION COST ESTIMATION

Estimation of material cost, labour cost and over heads, allocation of overheads – Estimation for different types of jobs

TEXT BOOKS:

1. Sinha.B.P., "Mechanical Estimating and Costing", Tata McGraw-Hill, Publishing Co.2002

REFERENCES:

2. Russell.R.S and Tailor, B.W, "Operations Management", PHI, 4th Edition.

3. Chitale.A.V. and Gupta.R.C., "Product Design and Manufacturing", PHI, 2nd Edition.

COURSE DESIGNERS

S. No.	Name of the Faculty	Designation	Department / Name of the College	Mail ID
1	G.ANTONY CASMIR	Asst Prot - II		antonycasmir@avit.ac.in

17MESE20 PREAMBLE	75F20		RA	PID F	ROT	OTYPI	ING A	ND		Catego	ory	L	Т	Р	Credit
1/1011	25120				TOO	LING				EC(S	SE)	3	0	0	3
			derstar	nd in d	etail al	bout the	e vario	ous Raj	pid Pro	ototypin	g Proc	ess and	its applic	cations	
PREF	REQUI	SITE:	NIL												
COU	RSE O	BJEC'	TIVES	5											
1	Identi	fy suit	able tii	me con	npress	ion tecl	hnique	es for r	apid p	roduct d	levelop	ment.			
2	Mode	l comp	lex en	gineer	ing pro	oducts a	and de	velop	proces	s plans t	for rap	id prod	uction.		
3	Analy	ze and	select	a rapi	d man	ufactur	ing tec	chnolo	gy for	a given	compo	onent.			
4	Identi	fv the	errors	durino	gener	ration o	f STL	files a	nd mir	nimize tl	nem.				
		- -													
5	Optim	Optimize FDM process parameters to improve the quality of the parts.													
COU	RSE O	SE OUTCOMES													
On the	e succes	ssful co	omplet	tion of	the co	ourse, st	udents	s will b	be able	e to					
CO1.	Und	erstan	d the w	vorkin	g princ	ciple an	d vari	ous RF	T tech	nniquies	•			Ur	derstand
CO2.	Und	erstan	d the w	vorkin	g princ	ciple of	liquid	,solid	based	process	metho	ods.		Ur	derstand
CO3.	Und	erstan	d the w	vorkin	g princ	ciple of	powd	er base	ed proc	cess met	hods.			Ur	derstand
CO4.						-	^		-	ng opera					Apply
CO5.		-	-		-					plication					Apply
						e									
MAP	PING	WIIH	PRO	GKAN	INE	UUIC	UNIES	5 ANL	PRO	GKAM	NIE 5	PECIF	IC OUT	COME	5
CO	PO1	PO	PO	PO	PO	PO6	PO	PO	PO	PO1	PO1	PO1	PSO	PSO	PSO3
S		2 	3	4	5		7	8	9	0	1	2	1 	2	
CO1	S	M	S	L	 M		- T						L		
CO2	S	M	S	L	-M		-L						L		
CO3 CO4	S S	M S	M S	L M	-M M		-L M						L L		
C04 C05	S S	S S	S S	M	M		IVI					-	L		
	5	5	c v	141	141										

Syllabus

INTRODUCTION

History – Development of RP systems – RP process chain - Impact of Rapid Prototyping on Product Development –Digital prototyping - Virtual prototyping-Rapid Manufacturing- Principle – Fundamental – File format – Other translators-Data Processing for Rapid Prototyping: CAD model preparation, Part orientation and support generation, Support structure design, Model Slicing and contour data organization, direct and adaptive slicing, Tool path generation.

LIQUID AND SOLID BASED PROCESS:

Classification – Liquid based system – Stereolithography Apparatus (SLA)-Solid Ground Curing (SGC)products, Advantages, Limitations, Applications and Uses. Solid based system – Fused Deposition Modeling-Laminated Object Manufacturing-Multi Jet Modeling Sysytem-principle, process, products, advantages, applications and uses

POWDER BASED PROCESS

Selective Laser Sintering – Three Dimensional Printing – Direct shell production casting –Laser Engineered Net Shaping (LENS)- -Direct Metal Deposition-Principle-Materials-process- products,-advantages- limitations- applications

RAPID TOOLING

Introduction-Need-Types -Advatages-Applications-Indirect rapid Tooling-silicone Rubber Tooling-Spray metal tooling-RSP Tooling-Reaction Injection Moulding-Direct Rapid Toling-Direct AIM-DMLS-Copper Polyamide-Laminated Tooling

REVERSE ENGINEERING

Introduction-concept of Reverse Engineering - Generic Process - Scanning-measuring device- contact type and non-contact type -Point Processing- CAD model creation from point clouds-preprocessing, point clouds to surface model creation, medical data processing – types of medical imaging, software for making medical models, medical materials, other applications

TEXT BOOKS:

 Rafiq I. Noorani, Rapid Prototyping, "Principles and Applications", Wiley & Sons, 2006.
 Chua C.K, Leong K.F and Lim C.S, "Rapid Prototyping: Principles and Applications", Second Edition, World Scientific, 2003.

REFERENCES:

1. N.Hopkinson, R.J.M, Hauge, P M, Dickens, "Rapid Manufacturing – An Industrial revolution for the digital age", Wiley, 2006

2. Ian Gibson, "Advanced Manufacturing Technology for Medical applications: Reverse Engineering, Software conversion and Rapid Prototying", Wiley, 2006

3.Paul F.Jacobs, "Rapid Prototyping and Manufacturing : Fundamentals of Stereolithography", McGraw Hill 1993.

4.Pham. D.T., and Dimov. S.S., "Rapid Manufacturing", Springer Verlog 2001.

S.N o	Name of the Faculty	Designation	Department / Name of the College	Mail ID
1	SAMUVEL MICHAEL	Asso.Prof	MECH/AVIT	samuvelmichael@avit.ac.in

17MESE21	IRON AND STEEL MAKING	Category	L	Т	Р	Credit
		EC(SE)	3	0	0	3

PREAMBLE

This course aims tounderstand the process of production of iron and steel from raw material, primary processing to refinement to special steels. The student will understand the kinetics involved in the production of iron and steel. The student also gains knowledge on the refinement of steels to obtain a quality product.

PREREQUISITE- NIL

COURSE OBJECTIVES

1	
1	Acquire the knowledge of raw materials and burden preparation
2	Understand the principles and processes of iron making
3	Understand the principles and processes of steel making
4	Acquire knowledge on various steel making processes
5	Understand and gain knowledge on production practice followed and recent development

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1. Understand the problems associated with Indian raw materials and burden preparation.	Understand
CO2. Understand and apply the extraction techniques of pig iron by reduction and smelting in blast furnace from iron ores.	Apply

Understand

Apply

CO3. Understand the principles and need for development of steel making processes

CO4.Acquire knowledge on various furnaces for steel manufacturing and select suitable Apply furnaces.

CO5. Apply the modern development in the steel and cast iron making production practice

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

CO S	PO1	PO 2	PO 3	PO 4	PO 5	PO6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO3
CO1	М	S	-	-	М	L	М						L		
CO2	S	S	L	-	М	-	М						L		
CO3	L	М	М	-	-	М	S						L		
CO4	S	L	-	-	М	-	М						L		
CO5	S	Μ	М	-	-	-	Μ						L		
S- Str	S- Strong; M-Medium; L-Low														

RAW MATERIALS AND BURDEN PREPARATION

Iron ore classification, Indian iron ores, limestone and coking coal deposits, problems associated with Indian raw materials, Iron ore beneficiation and agglomeration, Briquetting, sintering, Nodulising and pelletizing, testing of burden materials, burden distribution on blast furnace performance.

PRINCIPLES AND PROCESSES OF IRON MAKING

Blast furnace parts, construction and design aspects, ancillary equipment for charging, preheating the blast, hot blast stoves, gas cleaning, Blast furnace operation, irregularities and remedies, Blast furnace instrumentation and control of furnace Compositional control of metal and slag in blast furnace, modern trends in blast furnace practice. Reduction of iron ores and oxides of iron by solid and gaseous reductions-thermodynamics and kinetics studyof direct and indirect reduction, Gruner's theorem, blast furnace reactions. C-O and Fe-C-O equilibria, Rist diagrams, Ellingham diagram, material and heat balance- Sponge Iron making.

PRINCIPLES OF STEEL MAKING

Development of steel making processes, physico-chemical principles and kinetic aspects of steel making, carbon boil, oxygen transport mechanism, desulphurisation, dephosphorisation, Slag Theories, slag-functions, composition, properties and theories, raw materials for steel making and plant layout

STEEL MAKING PROCESSES

Open Hearth process- constructional features, process types, operation, modified processes, Duplexing, pre-treatment of hot metal. Bessemer processes, Side Blown Converter, Top Blown processes-L.D, L.D.A.C., Bottom blown processes, combined blown processes, Rotating oxygen processes-Kaldo and Rotor, Modern trends in oxygen steel making processes-Electric Arc and Induction furnace-constructional features. Steel Classifications and Standards-National and International.- Alloy Designation.

STEELS AND CAST IRON LADLE METALLURGY

Production practice for plain carbon steels, low alloy – Cast irons and ductile iron, stainless, tool and special steels, modern developments. Secondary steel making processes, continuous steel casting process – Deoxidation and teeming practice. Principle, methodsand their comparison, Killed, Rimmed and Capped steels, Degassing practices, ingotproduction, ingot defects and remedies. Recent trends in steel making technology.

Text Books:

- 1. Tupkary, R. H., "Modern Iron Making", 4th edition, Khanna Publishers, New Delhi.
- 2. Tupkary, R. H., "Modern Steel Making", 4th Edition, Khanna Publications, New Delhi.

Reference:

1. Biswas, A. K., "Principles of blast furnace iron making: theory and practice", SBA Publications, Kolkata.

- 2. Bashforth, G. R., "Manufacture of Iron and Steel", Vol. I, Chapman and Hall London.
- 3. Bashforth, G. R., "Manufacture of Iron and Steel", Vol.2, 3rd Edition, Chapman & Hall, London.
- 4. "Making, Shaping and Treating of Steel", US Steel Corporation, 11th edition.
- 5. AhindraGhosh and Amitchatterjee, "Iron Making and Steel Making Theory and

Practice", Prentice Hall of India Private Ltd., New Delhi.

COURSE DESIGNERS

S.N 0	Name of the Faculty	Designation	Department / Name of the College	Mail ID
1	S.Arunkumar	S.Arunkumar Assistant Professor		

1 7 \/T	ESE22		А	UTO	MOTI	VE		Cate	egory	L		Т	Р	Cr	edit
1/1011	LSE22		ľ	NFOT	RON	ICS		EC	(SE)	3		0	0		3
Pream To stu		unders	stand a	about	the au	tomoti	ve Inf	otronic	cs used	d in the	automo	biles			
Prerec	quisite	NIL													
Cours	e Obje	ctive													
1	To Stu	dy Abo	out Th	e Veh	icle C	ontrol	And	Vehicl	le Moi	nitoring	5				
2	To stuc	ly abo	ut the	positi	oning	and na	avigati	ion sys	stem						
3	To und	erstan	d abou	it the	warnir	ng and	detec	tion sy	ystem						
4	To stuc	ly abo	ut the	comfo	ort sys	tems i	n auto	mobil	es						
5	To stuc	ly abo	ut the	securi	ty and	l smar	t card	systen	n						
Cours	e Outc	omes:	On th	e suce	cessfu	l comj	pletior	ı of th	e cour	rse, stud	lents w	vill be	able to		
CO1.										n syster			Understa	ind	
CO2.										d warni	ng syst	em	Analyze		
CO3.		the kr		-	-			-					Understa		
CO4.							-	-		ger cars	S.		Understa		
CO5.	Und	erstand	1 the b	asics c	of vehi	cle co	llision	and it	s effec	ets.			Understa	ind	
Mapp	ing wit	h Prog	gramr	ne Ou	tcome	es and	Prog	ramm	e Spec	cific Ou	tcomes	5			
CO	PO1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO:	PSO 1	PSO 2	PSC 3
CO1	S	S	М	L									L		
CO2	S	S	S	S						S			L		
CO3	S	М	L												
CO4	S	М	L												
CO5	S	S	М	L								L	L		
S- Str	ong; M	-Medi	ium; I	L-Low	,								•		

INTRODUCTION

Driver information, driver perception, driver convenience, driver monitoring, general vehicle control, longitudinal and lateral control, collision avoidance and vehicle monitoring.

TELEMATICS

Global positioning system, geographical information systems, navigation system, architecture, automotive vision system and road recognition.

COLLISION WARNING AND AVOIDANCE

Collision warning system, causes of rear end collision, frontal object detection, rear vehicle object detection system, object detection system with braking system interactions.

COMFORTSYSTEMS

Adaptive cruise control system, adaptive noise control, active suspension system, power steering, collapsible and tiltable steering column and power windows, Adaptive lighting system

SECURITYSYSTEMS

Antitheft technologies-mechanical, electromechanical and electronic immobilizers, alarm system, stolen vehicle tracking system, remote keyless entry, smart card system and number plate coding..

venicie	e tracking system, remote keyless entry, smart card system and number plate coding
Text B	Books
1	LjuboVlacic,MichelParentandFumioHarashima,"IntelligentVehicleTechnologies",Butterworth-Heinemannpublications,Oxford,
2	RobertBosch, "AutomotiveHandBook",SAE
3	RonaldKJurgen, "Navigation and Intelligent Transportation Systems ProgressinTechnology", AutomotiveElectronicsSeries, SAE, USA,
Refere	ence Books
1	WilliamBR, "UnderstandingAutomotiveElectronics", ButterworthHeinemannWoburn,
2	Bechhold, "UnderstandingAutomotiveElectronics", SAE,
3	AllanWMB, "AutomotiveComputerControlledSystems", Elsevier Butterworth-Heinemann, 2011.
Cours	e Designers

S.No	Faculty Name	Designation	Department/Name of the College	Email id
1	M.SARAVANA KUMAR	ASST. PROF GRII	MECH./ AVIT	saravanakumar@avit.ac.in

17M	ESE23					NANO		Cate	egory	L	1	Т	Р	Cre	edit
1/11			I	MACI	HININ	IG		EC	(SE)	3		0	0		3
Prean			_	_	_				_						
-		e basic	s of m	icro a	nd nan	o mac	hining	; techn	ology	and its	applica	tions			
Prere NIL	quisite														
Cours	se Obje	ctive													
	To teac technol		ents fu	ndam	ental a	s well	as adv	vanced	l know	ledge o	f Micro	o Nano	o machini	ng	
2		h stud	ents th	e basi	c princ	ciples a	and m	echani	sm of	Traditio	onal Mi	cro N	ano mach	iining ai	nd its
			ents th	e basi	c princ	ciples a	and ap	plicati	ons of	Advan	ced Mi	cro Na	ano Mach	ining.	
	To teac Machir		ents th	e basi	c princ	ciples a	and ap	plicati	ons of	differe	nt Abra	asive t	based Mic	ro Nano	C
	To teac		ents fu	ndam	ents of	MEM	IS and	its tec	chniqu	es.					
Cours	se Outc	omes:	On th	e suce	cessfu	l comp	oletior	n of th	e cour	se, stu	lents w	vill be	able to		
CO1.			l the b	asic ne	eed of	Micro	Nano	Mach	ining i	in diffe	ent		Understa	und	
		stries Ionstra	te and	under	stand	the Tra	dition	al Mio	ro Na	no			Understa		
CO2.	machiningtechniques Demonstrate and Understand different mechanisms in Advanced Micro														
CO3.	Nan	o mach	ining									.10	-		
CO4.		erstanc erstanc		-						o Mach	uning		Apply Analyze		
CO5.										in orde	er to		Create		
CO6.										e regioi					
Mapp	ing wit						U		•	cific Ou			DCO	DCO	DCO
CO	PO1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3
CO1	S	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO2	S	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO3	S	М	L	-	-	-	-	-	-	-	-	-	М	-	-
CO4	S	М	L	-	-	-	-	-	-	-	-	-	-	-	-
CO5	S	М	L	-	-	-	-	-	-	-	-	-	-	-	-
CO6	S	S	S	S	S	М	М	-	S	S	-	-	S	М	S
S- Str	ong; M	-Medi	ium; I	L-Low	,	L I		I	I	L		1	1	L	

INTRODUCTION TO NANO MACHINING

Need-evolution- fundamentals and trends in micro and nano technologies-Consequences of the technology and society-challenges to manufacturing technology-evolution of precision in manufacturing, tooling and current scenario- Micro Nano materials, fabrication tools, requirements and applications.

TRADITIONAL NANO MACHINING

Theory of micromachining – Chip formation – Size effect in micromachining – Microturning-Micromilling-Microdrilling-Micromachining tool design – Precision Grinding – Partial ductile mode grinding – Ultraprecision grinding.

ADVANCED MICRO NANO MACHINING

Introduction-Classification- Mechanical Micromachining (AJM, USM)- Thermal Micromachining (EDM, LBM, EBM)-Electrochemical and Chemical Micromachining-Ion Beam Machining-Photochemical Etching

ABRASIVE BASED MICRO NANO MACHINING

Abrasive Flow Finishing (AFF)-Magnetic Abrasive Finishing (MAF)-Magnetorheological Finishing-Magnetorheological Abrasive Flow Finishing-Elastic Emission Machining (EEM) and Magnetic Float Polishing

MEMS

Introduction to MEMS, Definitions and classifications-History-applications-MEMS Market-Bulk Micromachining- Wet and Dry Etching-Surface Micromachining-Chemical-Vapor Deposition-Lithography-Wafer Bonding.

Text Books:

теле в	00K3.			
1	V.K.Jain, Introduct	ion to Micromach	ining, Narosa publishi	ng House, New Delhi.
2	Tai-Ran Hsu, "MEI	MS and Microsyst	tems: Design and Man	ufacture," McGraw- Hill, 2008.
Refere	nce Books:			
1	J. Paulo Davim, Ma	ark J. Jackson (20	09) Nano and Microma	achining, John Wiley & Sons.
2	V. K. Jain (2012), N	Micromanufacturi	ng Processes, CRC Pre	285.
3	Mohamed Gad-el-H	Hak (2010) MEMS	S Introduction and Fun	damentals, CRC Press.
Course	e Designers			
Sl.No	Faculty Name	Designation	Department/Name of the College	Email id
1	B.SELVA BABU	Assistant Professor	Mech / AVIT	selvababu@avit.ac.in

ELECTIVE COURSES

SPECIALIZATION – MATERIALS ENGINEERING

17MES	F37		MPOS	іте м	лтер		!			Catego	ry I	,]	Г	Р	С
1/10163	134		JVII 05.	L L L'∠ IVL	AICN	IALS	,]	EC(SE)	3	()	0	3
PREAN	IBLE	I													
This cou	ırse revi	ews the	various	compo	site ma	aterial	s their	proc	essing	techniq	ues an	d their	r b	ehavio	rs,
and to d	evelop 1	nodels a	and their	applica	ations	in aer	ospace	e, auto	motive	and me	edical	fields			
PRERE	QUISI	TE - NI	L												
COURS	SE OBJ	ECTIV	ES												
1 To	study ab	out Fibr	e reinfo	rced Pla	astics										
2 To	study th	e manuf	acturing	proces	ses of	the co	mposi	te mat	erials						
	•		ro mech												
			romecha				ompos	ite ma	terials						
5 To	study ab	out mat	erial mo	dels of	compo	osites									
COURS	SE OUT	COME	S												
On the s	successf	ul comp	letion of	the co	urse, si	tudent	s will	be able	e to						
Know th							_						U	Indersta	and
СО2. К	now the	various	manufa	cturing	techn	iques	in com	posite	manuf	acturing	2		U	Indersta	and
CO3. A	ble to te	st the n	nacro me	echanic	al beh	avior	of Fit	er Rei	inforce	d Plasti	cs		A	nalyze	
CO4.	Able to t	test the I	Micro m	echanic	cal bel	havior	of Fil	oer rei	nforcec	l plastic	s		A	nalyze	
CO5. N	/lake m	odels fo	r solving	g the co	mposi	te mat	erial n	nanufa	cturing				A	pply	
COS	PO PO		PO4	PO5	PO	PO	PO	PO	PO1	PO1	PO1	PSO	С	PSO	PSO
	1 2	3			6	7	8	9	0	1	2	1		2	3
CO1	5 -	L	-	-	М	S	-	-	-	-	-	L			
CO2	5 -	L	-	-	L	S	-	-	-	-	-	L			
CO3	5 S	S	S	L	L	S	-	-	-	-	-	L			
							-	-	ļ	-	-				
CO4	S S	S	S	L	L	S	-	-	-	-	-	L			
CO5	S S	S	S	S	L	-	-	-	-	-	-	L			
S- Stroi	ng M-M	edium	L- Low	7					<u> </u>	1	<u> </u>	<u> </u>			<u> </u>
Syllabu	S														
FIBRE	REINF	ORCE	D PLAS	TICS (FRP)										

Definition; Types; General properties and characteristics; Reinforcing materials - particles, fibers,

whiskers; Properties of reinforcing materials; Matrix materials; Additives; Properties of FRP materials; Applications

MANUFACTURING PROCESSES

Open mold processes – Hand layup, Spray up, Vacuum bag, Pressure bag & autoclave, Centrifugal

casting, Filament winding; Closed mold processes - Compression molding, Resin transfer molding (RTM),

Injection molding, Pultrusion; SMC & DMC products, etc.

MACROMECHANICAL BEHAVIOR OF FIBRE REINFORCED PLASTICS

Design variables; Selection of fiber-matrix and manufacturing process; Effects of mechanical, thermal,

electrical and environmental properties, Fiber orientation, Symmetric and asymmetric structure; Effects of

unidirectional continuous and short fibers; Lamination theory; Failure theories.

MICROMECHANICAL BEHAVIOR OF FIBRE REINFORCED PLASTICS

Strengthening methods, Elasticity of fibre composites, Plasticity and fracture of composites, Crack

propagation in fibre composites, Failure under compressive loads.

MATERIAL MODELS

Law of Mixtures, Shear lag model, Laminated plate model, Eshelby's models, Other models.

Text Books:

1. Haslehurst.S.E., "Manufacturing Technology ", ELBS, London.

2. Krishnan K. Chawle. "Composite Material: Science and Engineering" Second Edition, Springer.

Reference:

1.. T.W.Clyne, P.J. Withers, "An Introduction to metal matrix composites", Cambridge University Press.

2. F.C. Campbell "Structural Composite Materials", Materials Park, ASM International, 2010

Course	Designers
Course	Designers

S. No.	Name of the Faculty	Designation	Department / Name of the College	Mail ID
1	Dr.D.Bubesh Kumar	Associate Professor	Mechanical/ AVIT	bubeshkumarmech@gmail.com

17	MESI	233	EN	1ERG	ING	маті	ERIAI	S	Ca	tegory	L	Т	Р	C	redit
		100	1.11	iliko	11101			10	E	C(SE)	3	0	0		3
variou	im of t	rging	materi				unders cations		he pro	perties,	proces	sing, mai	nufactu	ring of	
	-														
Cours	se Obj				<u>.</u>										
1							0	Ũ				elevant ap	•	ons.	
2	To un	dersta	nd the	powd	er met	tallurg	y conc	epts, j	proces	s techn	iques, a	pplicatio	ns.		
3	To un	dersta	nd the	basic	s in co	mposi	ites, fal	bricati	on me	thods, t	ypes ar	nd applic	ations.		
4	To un	dersta	nd the	vario	us forr	ns of a	Smart	Mater	ials, ap	pplicati	ons.				
5	To un	dersta	nd the	vario	us type	es of N	Vano-n	nateria	ıl's, pr	oductio	on & ap	plication	s.		
Cours	se Out	come	s: On	the su	ccess	ful co	npleti	on of	the co	urse, st	udents	will be a	able to		
CO1.	Точ	unders	tand c	lassifi	cation	of Ma	aterials	and i	ts app	lication	s.				
CO2.	Kno	ow the	conce	epts of	powd	er Me	tallurg	y and	its tec	hniques					
CO3.	Tol	know 1	the dif	ferent	types	of cor	nposite	es.							
CO4.	То	unders	tand t	he con	cepts	of Sm	art Ma	terials							
CO5.	То	obtain	the kr	nowled	lge of	Nano	Materi	ials an	d its a	pplicati	ons				
Mapp	oing w	ith Pr	ogran	nme C	Outcor	nes ar	nd Pro	gram	me Sp	ecific (Dutcom	ies			
СО	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO12	PSO 1	PSO 2	PSC 3
CO1	S	L	L	L	M	M	,	0	,	0	1		L	2	
CO2	S	L	L	L	М	M							L		
CO2	S	L	M	M	M	L							L		
													L		
CO4	S	L	M	L	M	M									
005	S	L	S	М	М	М							L		
CO5 S- Str															

ENGINEERING MATERIALS – CONVENTIONAL

Classification of

engineering materials- Metallic materials-ferrous materials-steel & cast iron and non ferrous materials – aluminium and copper. Non-Metallic materials – glasses , ceramics ,Polymer and plastics – their characteristics and unique properties- Material for structural applications - Light weight structural materials for automobiles and aero plane applications .

POWDER METALLURGY – POWDER SYNTHESIS

Powder Metallurgy – Near net shaping process methods and principles - chemical methods – electrochemical methods - atomization – mechanical alloying – rapid solidification – processing – Nano size powders. Powder physical and chemical characterization – process characteristics - Applications.

COMPOSITE MATERIALS

Composites – Types of composites - Naturally occurring, synthetic & engineered composites - MMC – CMC – PMC - Fibre and whisker reinforced composites (continuous and discontinuous) - particulate composites layered or sheet composites, composite coating or thin fibre, inter metallic composites - properties and characteristics of composites

SMART MATERIALS

Introduction to intelligent/smart materials, shape memory alloys-types, NiTiNol-origin, properties, martensitic transformation, Memorization process- applications-medical, satellite etc

NANO MATERIALS

Nanomaterials-Definition, Classification of Nanostructured materials, causes of interest in nanomaterials, applications of nanomaterials. Processes for producing ultrafine powders-mechanical grinding, wet chemical synthesis of nanomaterials. Gas phase synthesis of Nano materials, gas condensation processes, chemical vapour condensation, laser ablation

TEXT BOOKS

- 1. 11. Budinski, Kenneth G, Budinski, Michael K, Engineering Materials: Properties and Selection, 9th Edition, PHI.
- 2. M.V.Gandhi., Thomson Smart Materials and Structures- Chapman and Hall.
- 3. A.K.Bandhopadyay-Nanomaterials-New Age

Reference Books

- 1. 1. 1. Srinivasan.K, Composite Materials, Narosa Publishing House.
- 2. Ramesh, Nanomaterials: Mechanics and Mechanisms, Springer Verlag, EPZ, Paperback edition.
- 3. Angelo P.C., Subramanian R., Powder Metallurgy, Science, Technology and Applications, Prentice Hall of India

S.No	Faculty Name	Designation	Department/ Name of the College	Email id
1	C.THIAGARAJAN	ASSISTANT PROFESSOR (GRADE-II)	Mechanical/AVIT	cthiagarajan@avit.acc.in

17MESE34TAILONE AIVERTISES MATERIALSMATERIALSMATERIALSPreambleThis course covers failures of materials and cau equipments for failure analysis.PrerequisiteNILCourse Objective1To study the fundamentals of failure analysis3To study introduction to failure analysis3To study the causes of failure in compone4To study the types of failure in compone5To study the methods and equipments forCourse Outcomes: On the successful compleCO1.Apply the importance of failure analys Determination of failure mode.CO2.Identify the failure mode identificationCO3.Describe thecauses of failures in compore CO5.CO4.Discuss the types of failures in compore CO5.Mapping with Programme Outcomes and Pro COCOPO 1PO 2PO3PO4PO 5PO	ysis ents nts r failur tion of is for a metho nents.	failure e anal f the c utomo	ysis ourse,	studen	ts will I	be able t	0 U		nd
This course covers failures of materials and cau equipments for failure analysis. Prereuisite NIL Course Objective 1 To study the fundamentals of failure analysis 2 To study introduction to failure analysis 3 To study the causes of failure in components 4 To study the types of failure in components 5 To study the methods and equipments for CO1. Apply the importance of failure analys Determination of failure mode. CO2. Identify the failure mode identification CO3. Describe thecauses of failures in components CO4. Discuss the types of failures in components Mapure with Programme Outcomes and Programe Outcomes and Programe Outcomes and Programme Outcomes and Prog	ysis ents nts r failur tion of is for a metho nents.	e anal	ysis ourse,	studen	ts will I nts and	be able t	0 U	Apply	nd
Course Objective 1 To study the fundamentals of failure analysis 2 To study introduction to failure analysis 3 To study the causes of failure in component 4 To study the types of failure in component 5 To study the methods and equipments for Course Outcomes: On the successful complet CO1. Apply the importance of failure analyst Determination of failure mode. CO2. Identify the failure mode identification CO3. Describe thecauses of failures in component CO4. Discuss the types of failures in component CO5. Indentify the methods and equipments Mapping with Programme Outcomes and Programme Outcomes	ents nts r failur tion of is for a metho nents.	f the c utomo	ourse, tive co	ompone	nts and		U	nderstar	
1 To study the fundamentals of failure analysis 2 To study introduction to failure analysis 3 To study the causes of failure in component 4 To study the types of failure in component 5 To study the methods and equipments for Course Outcomes: On the successful complet CO1. Apply the importance of failure analyst Determination of failure mode. CO2. Identify the failure mode identification CO3. Describe thecauses of failures in component CO4. Discuss the types of failures in component CO5. Indentify the methods and equipments Mapping with Programme Outcomes and Programme Outcomes and Programme	ents nts r failur tion of is for a metho nents.	f the c utomo	ourse, tive co	ompone	nts and		U	nderstar	
2 To study introduction to failure analysis 3 To study the causes of failure in component of the study the types of failure in component of the study the methods and equipments for the successful complet of the successful completo of the su	ents nts r failur tion of is for a metho nents.	f the c utomo	ourse, tive co	ompone	nts and		U	nderstar	
3 To study the causes of failure in component 4 To study the types of failure in component 5 To study the methods and equipments for Course Outcomes: On the successful comple CO1. Apply the importance of failure analyst Determination of failure mode. CO2. Identify the failure mode identification CO3. Describe thecauses of failures in component CO4. Discuss the types of failures in component CO5. Indentify the methods and equipments Mapping with Programme Outcomes and Programme PO	nts r failur tion of is for a metho nents.	f the c utomo	ourse, tive co	ompone	nts and		U	nderstar	
4 To study the types of failure in compone 5 To study the methods and equipments for Course Outcomes: On the successful comple CO1. Apply the importance of failure analyst Determination of failure mode. Determination of failure mode. CO2. Identify the failure mode identification CO3. Describe thecauses of failures in compor CO4. Discuss the types of failures in compor CO5. Indentify the methods and equipments Mapping with Programme Outcomes and P	nts r failur tion of is for a metho nents.	f the c utomo	ourse, tive co	ompone	nts and		U	nderstar	
5 To study the methods and equipments for Course Outcomes: On the successful comple CO1. Apply the importance of failure analyst Determination of failure mode. Determination of failure mode. CO2. Identify the failure mode identification CO3. Describe thecauses of failure in comport CO4. Discuss the types of failures in comport CO5. Indentify the methods and equipments Mapping with Programme Outcomes and	r failur tion of is for a metho nents.	f the c utomo	ourse, tive co	ompone	nts and		U	nderstar	
Course Outcomes: On the successful comple CO1. Apply the importance of failure analys Determination of failure mode. Determination of failure mode. CO2. Identify the failure mode identification CO3. Describe thecauses of failure in comport CO4. Discuss the types of failures in comport CO5. Indentify the methods and equipments Mapping with Programme Outcomes and	tion of is for a metho nents.	f the c utomo	ourse, tive co	ompone	nts and		U	nderstar	
CO1. Apply the importance of failure analys Determination of failure mode. CO2. Identify the failure mode identification CO3. Describe the auses of failure in compo CO4. Discuss the types of failures in compor CO5. Indentify the methods and equipments Mapping with Programme Outcomes and Programe Outcomes Advected Advected Advected Advecte	is for a methonnents.	utomo	tive co	ompone	nts and		U	nderstar	
CO1. Determination of failure mode. CO2. Identify the failure mode identification CO3. Describe thecauses of failure in comport CO4. Discuss the types of failures in comport CO5. Indentify the methods and equipments Mapping with Programme Outcomes and	metho			-				nderstar	
CO3. Describe thecauses of failure in comport CO4. Discuss the types of failures in comport CO5. Indentify the methods and equipments Mapping with Programme Outcomes and Programme Outcomes	nents.	ods and	lCorro	sion fai	lures.				
CO4. Discuss the types of failures in comport CO5. Indentify the methods and equipments Mapping with Programme Outcomes and							U	nderstar	ıd
CO5. Indentify the methods and equipments Mapping with Programme Outcomes and Programe Outcomes And Programe Outcomes And Programme Outcomes And Prog	ents.								
Mapping with Programme Outcomes and Programme Outco							U	nderstar	ıd
CO PO PO2 PO3 PO4 PO PO	for fail	lure an	alysis.					Analyze	<u>,</u>
	ogran	nme S	pecific	Outco	mes				
	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO12	PSO 1	PSO 2	PSO 3
CO1 S M M M	-	-	-	-	-	-	L	-	_
CO2 S M M L	-	-	-	-	-	-	L	-	-
CO3 S M M M	-	-	-	-	-	-	L	-	-
CO4 S L L L	-	-	-	-	-	-	L	-	-
CO5 S M M L	5 S M M L L								
S- Strong; M-Medium; L-Low			-	-	-	-		-	-

FUNDAMENTALS OF FAILURE ANALYSIS

Importance of failure analysis for automotive components, Steps in typical failure analysis: Collection ofbackground data (review documentation and speak with appropriate individuals), Selection of failed and unfailed samples for examination, Preliminary examination of the failed part, Non-destructive evaluation, examination and analysis, Microscopic Mechanical testing. Macroscopic examination and analysis, Determination of failure mode, Chemical analysis, Fracture mechanics considerations, Full scale testing under service conditions, Analysis of the evidence, Formulation of conclusions, Recommendations toprevent reoccurrence, Sample preparation methods for failure analysis, Selection of locations/samples forfailure analysis.

INTRODUCTION TO FAILURE ANALYSIS

Failure mode identification methods, Failure mechanisms: Fatigue failures, fractography, effect of variables: part shape, type of loading, stress concentration, metallurgical factors, etc. Wear failures, adhesive, abrasive, erosive, corrosive wear. Corrosion failures, types of corrosion: uniform, pitting, selective leaching, intergranular, crevice, etc. Elevated temperature failures, creep, thermal fatigue, micro structural instability, and oxidation.

CAUSES OF FAILURE IN COMPONENTS

Misuse or Abuse, Assembly errors, Manufacturing defects, Improper maintenance, Fastener failure, Design errors, Improper material, Improper heat treatments, Unforeseen operating conditions, Inadequate quality assurance, Inadequate environmental protection/control, Casting discontinuities. Data compilation and identification of root cause.

TYPES OF FAILURES IN COMPONENTS

Fatigue failures, Corrosion failures, Stress corrosion cracking, Ductile and brittle fractures, Hydrogen embrittlement, Liquid metal embrittlement, Creep and stress rupture.

METHODS AND EQUIPMENTS FOR FAILURE A NALYSIS

Selection of suitable testing methods for failure analysis, Selection of metallurgical equipments for failure Analysis, SEM-EDAX.

Text Books

	1	"Understanding How Components Fail" by Donald J. Wulpi; ASM International Publication.
	2	"Analysis of Metallurgical Failures: by Vito J. Colangelo; Francis A. Heiser Wiley Publication
,	3	ASM Handbook Vol.11 - Failure Analysis and Prevention, ASM International Publication, 1995.

Reference Books

2 Metallurgical Failure Analysis by Charlie R. Brooks; Ashok Choudury; McGraw-Hill Publicati	on.
3 bgraphy Principles and Practice by Voort, George F. Vander; ASM International Publication	

S.No	Faculty Name	Designation	Department/ Name of the College	Email id
1	C.THIAGARAJAN	ASSISTANT PROFESSOR (GRADE-II)	Mechanical/AVIT	cthiagarajan@avit.acc.in

17	MES	E35		ANO S ATER						ategory		L	Т	Р		edit
			AF	PPLIC	CATIC	ONS			E	C(SE)		3	0	0		3
Prea To de			know	ledge	of stuc	lents i	n nanc	o-struc	tured 1	nateria	ls.					
Prer NIL		-		0												
Cour	rse O	bject	ive													
1		e objec o-mat			course	e is to	make	the stu	dents	familia	r with	the diff	ferent me	ethods of	f synthe	sis for
2	To	motiv	ate the	e stude	ents to	under	stand	the evo	olutior	n of na	no-mat	erials i	n the scie	entific e	ra.	
3	То	To understand different processing methods and properties of nano-materials.														
4																
5	To	provic	le the	variou	is app	icatio	ns of r	nano-n	nateria	ls for f	uture e	enginee	ring appl	ications		
Cour	rse O	outcor	nes: (On the	succe	essful	compl	etion	of the	course	e, stud	ents wi	ll be abl	e to		
CO1.	indertais and its appreations															
CO2.		Understand the various synthesis process of nano-materials, methods and various chemical approaches. Understand											3003 3 0 0 3 The different methods of synthesis forthe different methods of synthesis forterials in the scientific era.no-materials.engineering applicationsents will be able totrees of nanoUnderstandapplyApply			
CO3.				the va ss of n				roach	metho	ds and	techni	ques in	volved	03 0 3 12 PSO 12 13 12 14 12 15 12 15 12 15 12 15 12 15 12 15 12 15 12 15 12 15 12 15 12 15 12 15 12 15 12 15 12 15 12 15 12 15 12 15 12 15 12 <t< td=""></t<>		
CO4.	. 1	Applic	cation	s and t	ypes o	of vari	ous na	no poi	us ma	terials.				Apply	re PSO PSO 2	
CO5.	. 1	Analy	ze the	vario	us nan	o-mat	erials	and its	princi	iple and	d desig	"n.		Analy	ze	
Мар	ping	with	Prog	ramm	e Out	comes	and I	Progra	mme	Specif	ïc Out	comes				
CO		PO1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0		PO12			
CO	1	М	2	5	+	L	S	7	0	,	0	1		1	2	5
CO2	2	S				М	М									
CO	3	S				М	М									
CO4	4	S				М	М							L		
CO	5	S		М		L	М							М		М
S- St	rong	;; M-N	Aediu	ım; L-	Low											
Sylla	bus															
INTI	ROD	UCT	ION 7	TO NA	ANO S	STRU	CTU	RED N	IATE	RIAL	S					

0D, 1D, 2D structures –Size Effects –Fraction of Surface Atoms –specific Surface Energy and Surface Stress –Effect on the Lattice Parameter –Phonon Density of States–the General Methods available for the Synthesis of Nanostrutures –precipitative –reactive –hydrothermal/solvothermal methods –suitability of such methods for scaling –potential Uses.

BULK SYNTHESIS AND CHEMICAL APPROACHES

Top down and bottom up approaches–Mechanical alloying and mechanical ball milling- Mechano chemical process, Inert gas condensation technique – Arc plasma and laser ablation, Sol gel processing-Solvo thermal, hydrothermal, precipitation, Spray pyrolysis, Electro spraying and spin coating routes, Self-assembly, self-assembled monolayers (SAMs). Langmuir-Blodgett (LB) films, micro emulsion polymerization- templated synthesis, pulsed electrochemical deposition.

PHYSICAL APPROACHES

Vapor deposition and different types of epitaxial growth techniques (CVD,MOCVD, MBE,ALD)- pulsed laser deposition, Magnetron sputtering - lithography :Photo/UV/EB/FIB techniques, Dip pen nanolithography, Etching process :Dry and Wet etching, micro contact printing.

NANOPOROUS MATERIALS

Zeolites, mesoporous materials, nanomembranes - Carbon nanotubes and graphene - Core shell and hybrid nanocomposites.

APPLICATION OF NANOMATERIALS

Overview of nanomaterials properties and their applications, Molecular Electronics and Nanoelectronics – Nanobots- Biological Applications – Quantum Devices – Nanomechanics - Photonics- Nano structures as single electron transistor –principle and design.

Text Books

1	Guozhong Cao, "Nanostructures and Nanomaterials, synthesis, properties and applications", Imperial College Press, 2004.
2	Carl C. Koch (ed.), "Nanostructured Materials", Processing, Properties and Potential Applications, Noyes Publications, Norwich, New York, U.S.A.
3	Bhusan, Bharat (Ed), "Springer Handbook of Nanotechnology", 2nd Edition, 2007.

Reference Books

1	Modern Physics – Beiser 6th edition 2009.											
2	Quantum Mechanics - Bransden and Joachen 2nd edition 2000.											
3	Quantum Physics of Atoms, Molecules, Solids, Nuclei, and Particles, 2nd Edition by Eisberg, Robert; Resnick, Robert, 1985.											
4	Quantum Physics – Theory and application, Ajoy Ghatak, Springer 2004.											
5	Principles of Quantum M	Iechanics 2nd	ed R. Shankar 2000.									
6	Quantum Mechanics - V	ol 1&2 - Cohe	n-Tannoudji,1997.									
Cour	rse Designer											
S.No Faculty Name Designatio Department/Name of the College Email id												
1.	A.SENTHILKUMA R	AP-II	MECH/AVIT	senthilkumar@avit.ac.in								

17MESE36		5	STRUCTURAL PROPERTY OF						0	Categor	y L	Т	Р	Cred	dit	
1/14	LOLO	,	ENGINEERING MATERIALS]	EC(SE)	3	0	0	3		
Pream To stu		structu	ural Pr	operty	and c	orrela	tion or	n Engir	neerin	g Mater	ials		·			
Preree	quisite	– NIL														
Cours	e Obje	ective														
1	To stu	dy the	mecha	anical	behavi	ior of	the ma	terial								
2	To study the elasticity of the material															
3	To study the continuum mechanics of materials															
4	To study the fracture of materials															
5	To study the continuum mechanics of materials															
Cours	e Outo	comes	: On t	he suc	cessfu	ıl com	pletio	n of th	e cou	rse, stu	dents v	vill be	able to			
CO1.	To u	nderst	and th	e mecl	hanica	l beha	vior of	f the n	nateria	al				Under	stand	
CO2.		To apply the stress and strain concepts in elasticity of the materials Apply														
CO3.	To obtained the knowledge about continuum mechanics of materialsUnderstandTo know the fracture of materialsApply											stand				
CO4.	_													Apply		
CO5.	To A	nalyz	e the c	ontinu	ium m	echan	ics of	materi	als					Analyz	ze	
Mapp	ing wi	th Pro	gram	me Oı	ıtcom	es and	l Prog	ramm	e Spe	cific Oı	itcome	S				
CO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3	
CO1	М	L	S	L	S	L							М			
CO2	М	L	S	L	S	L							М			
CO3	М	L	S	L	S	L							S			
CO4	М	L	S	L	S	L							S			
CO5	М	L	S	L	S	L							S			
S- Str	ong; M	I-Med	lium;]	L-Lov	V											
SYLL	ABUS															
Introd	luction	1														
Stiffne	ess, Stro	ength,	and T	oughn	ess, T	ypes o	of mecl	hanical	l beha	vior, Re	levance	e, Mea	suremen	it,		
data,M	lacrosc	opic, o	contin	uum b	ehavic	or, Phy	vsical r	nechar	nisms	controll	ing beh	avior.				
Elasti	city															
Introdu	uction,	Stres	ss, str	ain, c	ompli	ance	and s	stiffnes	s ten	sors, P	hysical	origi	n of e	lastic n	noduli,	
Genera	alized l	Hooke	's law	and its	s appli	cation	to cry	vstals, l	Desig	ning for	modulı	is and	Compos	sites		
Conti	nuum	Plastic	city													
True s	tress-tr	ue stra	ain, Ne	ecking	and C	onside	ere's C	riterio	n Yie	ld Crite	ria and	vield	ocus N	ormality		

Isotropic and kinematic hardening, Plastic stress-strain relations.

Fracture

Importance of Fracture Mechanics, Griffith Fracture Theory, Crack Driving Force & Energy Release Rate, Modes of fracture, Stress intensity factors, Similitude, Role of Crack-tip Plasticity--Plastic Zone Size & Shape, K-dominance, Fracture Toughness-Microstructural Issues.

Fatigue

Total life approaches, Fatigue design approaches, HCF and LCF, Fatigue crack inhibition, Fatigue crack growth, Paris law and models, Threshold, Damage tolerant approach, Striations, Different stages of fatigue crack growth, Examples.

Text B	Books										
1	GE Dieter, Mechanical Metallurgy, McGraw-Hill										
2	RW Hertzberg, Deformation and Fracture Mechanics of Engineering Materials, John Wiley &Sons										
3	MF Ashby and DRH Jones, Engineering Materials 1, Butterworth-Heinemann										
4	D Hull and DJ Bac	on, Introduction to D	Dislocations, Perga	mon							
5	Fracture Mechanics	s – T.L. Anderson, C	CRC Press.								
Refere	ence Books										
1	MA Meyers and K	Chawla, Mechanical	l Behavior of Mate	erials, Prentice Hall							
2	S Suresh, Fatigue o	f Materials, Cambrid	dge University Pre	SS							
3	JP Hirth and J Loth	ne, Theory of Disloc	ations, John Wiley	v & Sons							
Cours	e Designers			-							
S.No	Faculty Name Designation Department/ College Email id										
1	J.SENTHIL	Associate Professor	Mech / AVIT	jsenthil@avit.ac.in							

17MI	ESE37				RIES			Cate	egory	L		Т	Р	Cre	edit
1/1011	LSL37]	ELAS	TICI	ГY		EC	(SE)	3		0	0		3
					ody fo	orces, j	orinciț	ple stre	esses a	and also	o covers	s 2D j	problems	of mate	erials,
Preree	quisite	- NIL													
Cours	e Obje	ctive													
1	To kno	w the f	forces	acting	on bo	dy and	l surfa	ices							
2	To lear	n stres	s, strai	n and	the rel	lation	betwe	en thei	n						
3	To ana	lyze th	e prob	lemso	n mate	erials i	n 2D								
4	To lear	n the '	Torsio	n actir	ng on r	nateria	als of o	circula	r and	non - ci	rcular s	ectior	ıs		
5	To stuc	ly the t	herma	l stres	ses an	d anal	yze the	e probl	lems o	n Curv	ed bean	ns			
Cours	e Outc	omes:	On th	e suco	cessful	l comp	pletior	n of th	e cour	se, stu	dents w	vill be	able to		
CO1.	Iden	tify the	e force	s actir	ig on c	bjects							Understa	and	
CO2.	Und	erstand	l the p	rincipl	e of st	resses	, stres	s- strai	n rela	tionship)		Understa	and	
CO3.		e Two			-								Apply		
CO4.											er desig	n	Apply		
CO5.		nate th ed bea					apply	it to s	olve p	roblem	s on		Apply		
Mapp	ing wit	h Prog	gramn	ne Ou	tcome	es and	Prog	ramm	e Spec	cific Ou	itcomes	5			
CO	PO1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3
CO1	S	M	L	L	L	L	L	-	-	-	-		L	_	
CO2	S	М	М	L	L	L	-	-	-	-			L		
CO3	S	S	S	S	М	-	-	-	-	-			L		
CO4	S	S	S	S	S	-	-	-	М	L			L		
CO5	S	S	S	S	S	-	_	-	М	L			L		
S- Str	ong; M	[-Medi	ium; I	L-Low		<u> </u>	<u> </u>	<u> </u>	<u>.</u>		<u>I</u>	<u> </u>		1	<u> </u>
	ABUS														

Surface and Body forces

Surface and Body forces, Stress and Strain Tensor, Transformation Laws, Lagrangian and EulerianDescription, Equation of Elasticity (Equilibrium, Constitutive law and Boundary Conditions), Cauchy's Formula

Stresses and Strains

Principle of Stresses, Lami's stress Ellipsoid, Cauchy stress quadratic, octahedral stress, Stress –strain relationship, Uniqueness of Solutions, St. Venant's Principle, Strain Energy functions,

Two dimensional problems on materials

Two dimensional problems in rectangular coordinates (polynomial solution, bending of beam, Fourier series solution). Two-dimensional problems in polar coordinates (axisymmetric problems – rotating discs, Cylindrical shells, plate with a hole, infinite plate with point load, curved beams). Two-dimensional problems in curvilinear coordinates using stress functions.

Torsion on materials

Torsion (circular and non-circular cross section, membrane analogy, thin walled members, hydrodynamic analogy). Scalar and Vector potentials, Strain potentials. Plane state of stress and strain (Two & Three Dimensional), Airy's stress function for problems, Representation of bi harmonic function using complex variables, kolosoff-Mushkelishvili method.

Thermal stresses and Curved beams

Thermal stresses and its Applications to problems of curved beam, thick cylinder and rotating disc, stress concentration

1	S. Timoshenko and	J.N. Goodier, The	eory of Elasticity, McC	Braw – Hill International Publication.						
2	Vitor Dias da Silva, Mechanics and Strength of Materials, Springer.									
3	I. S. Sokolnikoff, Mathematical Theory of Elasticity, McGraw-Hill International Publication									
Refere	nce Books									
1	A. E. Green and W. Zerna, Theoretical Elasticity, Dover Publications									
2	L. D. Landau and I	E. M. Lifschitz, Tl	neory of Elasticity, Per	gamon Press						
3	F. P. Beer, E. R. Jol Publication.	hnston and J. T. D	eWolf, Mechanics of N	Materials, McGraw – Hill International						
Course	e Designers	-	-							
S.No	Faculty Name	Designation	Department/Name of the College	Email id						
1	J.SENTHIL	Associate Professor	Mech / AVIT	jsenthil@avit.ac.in						

ELECTIVE COURSES SPECIALIZATION – PRODUCT LIFE CYCLE

17	MESF	708			DUCT			ND	Ca	ategor	y	L	Т	Р	Cre	edit
1,1		100		D	EVEI	LOPM	IENT		Ε	C(SE)		3	0	0	3	3
funct	focus o	of the			n and ating a				tegrati	on of t	he mar	keting,	design, a	and mar	nufactur	ing
Prer NIL	equisi	ite														
Cou	rse Ob	bjecti	ive													
1	Unde	erstai	nding	the as	pects o	of proc	luct pl	annin	g and o	develo	pment					
2	To u	inders	stand	the cu	stome	r needs	S									
3	Conc	cept g	genera	ation a	nd ind	ustria	l needs	8								
4	Conc	cept s	selecti	ion and	d meth	od of	selecti	ion								
5	Intel	lectu	al pro	perty												
Cou	rse Ou	utcon	nes: (On the	succe	essful	compl	etion	of the	cours	e, stud	ents wi	ill be abl	e to		
C01						-	-	-			develo	-		Under	stand	
CO2		Understand the customer requirements and specification of the product Apply														
CO3	. A	pply	the co	oncept	t of de	sign aı	nd mai	nufact	uring t	o deve	elop ne	w produ	ıct	Apply		
CO4	,					•	•					opment		Apply		
CO5				produ ocedu		ments,	scope	, oper	ating p	procedu	ure and	outline	e for	Analy	ze	
Мар	ping v	with	Prog	ramm	e Out	comes	and I	Progra	amme	Specif	fic Out	comes				
CO	P	01	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO12	PSO 1	PSO 2	PSO 3
CO	1	S				L	L	М						L		
CO	2	S	М	L	L	М	М							L		
CO.	3	S	L	М										L		
CO	4	S	М	S	М	М	М							L		
CO	5	S	М	S	S									L		
S- St	rong;	M-N	/lediu	m; L-	Low				1	1		<u>I</u>	1	1	1	

INTRODUCTION AND PRODUCT PLANNING AND PROJECT SELECTION

Significance of product design, product design and development process, sequential engineering design method, the challenges of product development, Identifying opportunities evaluate and prioritize projects, allocation of resources

IDENTIFYING CUSTOMER NEEDS AND PRODUCT SPECIFICATIONS

Interpret raw data in terms of customers need, organize needs in hierarchy and establish the relative importance of needs., Establish target specifications, setting final specifications

CONCEPT GENERATION AND INDUSTRIAL DESIGN

Activities of concept generation, clarifying problem, search both internally and externally, explore the output, Assessing need for industrial design, industrial design process, management, assessing quality of industrial design

CONCEPT SELECTION

Overview, concept screening and concept scoring, Concept and Idea generation - methods of selection. - Activities of concept generation, clarifying problem, search both internally and externally

INTELLECTUAL PROPERTY

Elements and outline, patenting procedures, claim procedure, Design for Environment: Impact, regulations from government, ISO system and IPR.

Text Books

1

Ulrich K. T, Eppinger S.D and Anita Goyal, "Product Design and Development", Tata McGraw Hill, 2009.

Reference Books

1	Otto K, and Wood K,	"Product Design", Pearson	Education, 2001.
---	---------------------	---------------------------	------------------

004150	Course Designers												
S.No	Faculty Name Designation		Department/Name of the College	Email id									
1	P.KUMARAN	ASST. PROF –GR- II	Mech / AVIT	Kumaranp@avit.ac.in									
2	R.PRAVEEN	ASST. PROF –GR- II	Mech / AVIT	praveen@avit.ac.in									

17MESE09					PROD			Ca	ategory	y I	L	Т	Р	Cr	edit
1/1			D	EVEI	LOPM	IENT		E	C(SE)		3	0	0		3
This New inter-	Preamble This course introduces students to the methods that companies use to develop and release new products. New product development is a challenging, rewarding activity that requires multifunctional cooperation and inter-disciplinary skills. For technology companies, successful product development is critical to success. Prerequisite													on and	
Prero NIL	1														
Cour	Course Objective														
1	1 To understand the new product process														
2	To learn l	now to	o integ	rate th	ne cust	omer a	and en	d-con	sumer	into th	is proc	ess.			
3	To learn a				-			-				-	-		
4	To actual and an int					leveloj	pment	proce	ss by c	onceiv	ing yo	ur owi	n new pro	duct or s	ervice
5	To particite teamwork	pate i	in grou	ıp wor	k sess							with th	ne importa	nce of	
Cour	rse Outcor											vill be	able to		
CO1.	Under design		the co	ncept	of des	igning	a new	produ	lict and	impor	tance	of	Unde	rstand	
CO2.	Under	stand	the en	d user	needs	and d	efine t	he des	sign pa	ramete	rs of t	he	Unde	rstand	
CO3.	Apply in the		-		w proc	luct de	esign to	o clari	fy the j	problei	ns occ	curring	Appl	у	
CO4.											•		Unde	rstand	
CO5.	Analy: patent				ments,	scope	, opera	ting p	procedu	ire and	outlir	ne for	Anal	yze	
Map	ping with	Prog	ramm	e Out	comes	and I	Progra	mme	Specif	ïc Out	come	5			
СО	PO1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO	$12 PSO \\ 1 1$	PSO 2	PSO 3
CO	S	L			М	М	М						L		
CO2	2 S	М	М	L	М	S							L		
COS	3 S		S				М						L		
CO4	CO4 S M S S M M														
COS	CO5 S M S S M L														
S-St	S- Strong; M-Medium; L-Low														

INTRODUCTION TO NEW PRODUCT DESIGN

Introduction to New Product Design – Importance – Objectives – The New Product Development Process Principles of Success - Factors influencing product design – Characteristics of a good product design

IDENTIFYING CUSTOMER NEEDS AND PRODUCT SPECIFICATIONS

Interpret raw data in terms of customers need, organize needs in hierarchy and establish the relative importance of needs., Establish target specifications, setting final specifications

CONCEPT AND PRODUCT DESIGN AND DEVELOPMENT

Concept and Idea generation -Activities of concept generation, clarifying problem, search both internally and externally, explore the output, Assessing need for industrial design, industrial design process, management, assessing quality of industrial design - Testing and forecasting

NEW PRODUCT LAUNCH AND MARKET ENTRY

Preparing a Launch Plan - Market Testing - Pricing, Packaging - Integrated Marketing - Customer and Channel Marketing - Innovation Marketing -

INTELLECTUAL PROPERTY

Elements and outline, patenting procedures, claim procedure, Design for Environment: Impact, regulations from government, ISO system and IPR.

Text Books 1 Otto K, and Wood K, "Product Design", Pearson Education, 2001. 2 Ulrich K. T, Eppinger S.D and Anita Goyal, "Product Design and Development", Tata McGraw Hill, 2009.

Reference Books

1 New Products Management,9th ed., by Merle Crawford and Anthony DiBendetto

S.No	Faculty Name Designation		Department/Name of the College	Email id			
1	R.PRAVEEN	ASST. PROF –GR- II	Mech / AVIT	praveen@avit.ac.in			
2	P.KUMARAN	ASST. PROF –GR- II	Mech / AVIT	Kumaranp@avit.ac.in			

	DESIGN FOR MANUFACTURING ANDCategoryLTEC(SE)30										Т	Р	Cre	edit	
17MI	ESE10		MAN	UFAC		ING A	ND	E	C(SE)		3	0	0		3
Pream To stud		u desig	n can	be ma	de suit	table fo	or vari	ous m	anufac	turing	and ass	sembly pr	rocess re	equirem	ents.
Prereq NIL	uisite														
Course	Object	ive													
1 T	'o under	stand	the fac	ctors fo	or Des	sign for	Man	ufactu	re						
2 T	'o know	about	the ba	asics o	f Forn	n Desig	gn of o	casting	g and w	velding					
3 T	'o know	about	the ba	asics o	f Forn	n desig	n of f	orged	and ma	achined	1 comp	onents			
4 T	'o study	about	desig	n for a	ssemb	oly									
5 T	'o study	about	the va	arious	assem	bly me	thods	and p	rocesse	es and	design	for assen	nbly gui	delines	
Course	Outco	mes: (On the	e succe	essful	comple	etion	of the	cours	e, stud	ents wi	ill be abl	e to		
CO1.	Ourse Outcomes: On the successful completion of the course, students will be able to Understand the factors to be considered for design and manufacturability Understand D1. Understand the factors to be considered for design and manufacturability Understand														
CO2.	Under	rstand	the re	quiren	nents a	and des	ign co	onside	ration 1	for cast	ting & v	welding	Under	stand	
CO3.	Under machi		the re	quiren	nents a	and des	ign co	onside	ration	for forg	ging &		Under	stand	
CO4.	Apply metho		arious	types	of app	proache	es foll	owed	in Desi	ign for	assemt	oly	Apply		
CO5.	Analy proces		vario	us met	hods f	for asse	embly	proce	dure de	ependi	ng on tl	ne	Analy	ze	
Mappii	ng with	Prog	ramm	e Out	comes	and P	rogra	amme	Specif	fic Out	comes				
СО	PO1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO12	PSO 1	PSO 2	PSO 3
CO1	S	L					L						L		
CO2	S	S	L				L						L		
CO3	S	L	М		S								L		
CO4	S	М	S	М	S								L		
CO5	S	М	S	S	S								L		
					1			1					1	1	

INTRODUCTION TO DESIGN FOR MANUFACTURE

Qualities of a designer - Systematic working plan - Factors influencing choice of materials - Manufacturing methods. Process capability. Tolerances - Relevant to manufacturing, assembly. Tolerance stack - effects on assembly- Methods of eliminating tolerance stack.

FORM DESIGN - CASTING AND WELDING

Influence of loading, materials, production methods on form design. Casting considerations - Requirements and rules. Welding considerations - Requirements and rules. Redesign of components for castings. Redesign of components for welding. Case studies.

FORM DESIGN - FORGING AND MACHINING

Forging considerations - Requirements and rules. Choice between casting, forging and welding. Machining considerations - Requirements and rules. Redesign of components for forging. Redesign of components for machining. Case studies.

INTRODUCTION TO DESIGN FOR ASSEMBLY

Distinction between assembly methods and processes. Factors determining assembly methods and processes. Design factors independent of methods and processes. Design factors dependent on methods. Design factors dependent on processes.

DESIGN FOR ASSEMBLY METHODS

Approaches to design for assembly - Approaches based on design principles and rules -Qualitativeevaluation procedures, knowledge based approach, Computer aided DFA methods. Assemblability measures. Boothroyd Dewhurst DFA method, Redesign of a simple product. Case studies.

Text Books

2

Alan Redford and chal, Design for Assembly-Principles and Procedures, McGraw Hill International
Europe, London, 1994.

Swift. K.G., Knowledge Based Design for Manufacture, Kogan Page Ltd., 198
b with The gitte of Dasea Design for Manaraetare, Hogan Fage Daa, 190

Reference Books

1 James G. Bralla, Hand Book of Product Design for Manufacturing, McGraw Hill Co., 1986

S.No	Faculty Name	Designation	Department/Name of the College	Email id			
1	R.PRAVEEN	ASST. PROF –GR- II	Mech / AVIT	praveen@avit.ac.in			
2	P.KUMARAN	ASST. PROF –GR- II	Mech / AVIT	Kumaranp@avit.ac.in			

17MESE11	FAILURE MODE AND	Category	L	Т	Р	Credit
	EFFECTS ANALYSIS	EC(SE)	3	0	0	3

Preamble

This course provides to learn the FMEA is to take actions to eliminate or reduce failures, starting with the highest-priority ones. Failure modes and effects analysis also documents current knowledge and actions about the risks of failures, for use in continuous improvement. FMEA is used during design to prevent failures.

Prerequisite

NG1

Nil	
Course Objective	
1 To identify potential failure modes for a product or process	
2 To assess for reducing risk and improving reliability of a system, design or process	
3 To rank the issues in terms of importance	
4 To identify and carry out corrective actions to address the most serious concerns	
5 To critically analyze the failure mode effects	
Course Outcomes: On the successful completion of the course, students will be able to	
CO1. Understanding the value and versatility of amethodical approach to Understand systematic designevaluation	
CO2. Knowing the different types of FMEA and recognizing when each is to be used and when FMEA is not appropriate or effective Understand	
CO3. Relating FMEA to other continuous improvement tools Apply	
CO4. Performing an Failure Mode And Effects Analysis Analyze	
CO5. Knowing current trends and application techniques for various industries Understand	
Mapping with Programme Outcomes and Programme Specific Outcomes	
CO PO PO<	50 3
CO1 S M M L	
CO2 S M L L L - L L - L	
CO3 S S S S S L M	
CO4 S S M M L Image: S S Image: S	
CO5 S M L M M - L L L	
S- Strong; M-Medium; L-Low	

INTRODUCTION TO FMEA

FMEA : A General Overview- significant characteristics – The four types of FMEA's – Relationships of FMEA and other Tools- Quantitative Techniques – Qualitative Techniques.

TEAMS AND TEAM MECHANICS OF FMEA

Team – Use of a Team- Team process Check – Handling of difficult individuals – planning the meeting – In process meeting management

FMEA APPLIED

Typical Tools Used in FMEA - Teams and Team Mechanics of FMEA - Concept FMEA - System FMEA - Design FMEA - Process FMEA - Service FMEA - Machine FMEA

FMEA CASE STUDIES

FMEA Flow and its Role In Failure Mode Avoidance - Automotive Industry - Electromechanical Industry - Hardware and Software - Semiconductor Industry - Medical Device Industry - Healthcare - Pharmaceutical - Utilities - Oil and Gas - Green Industry

FAILURE MODE EFFECTS AND CRITICALLY ANALYSIS (FMECA)

Introduction to FMECA – Types of FMECA – Quantitative criticality analysis – Qualitative criticality analysis – FMECA criticality matrix – FMECA worksheet – Summary output of FMECA

Text	Books									
1	Failure Mode and Ef Press, 2003	fect Analysis: F	MEA from Theory to I	Execution, D. H. Stamatis, ASQ Quality						
2	Failure Modes and Ef	ffects Analysis f	or Design by Michael A	. Anleitner (August 2010)						
3	Failure Mode and Eff	ect Analysis: FN	MEA from Theory to Ex	ecution by D. H. Stamatis (June 2003)						
Refe	rence Books									
1	The FMEA Pocket Handbook: by Kenneth W. Dailey (2004)									
2	Root Cause Analysis:	Simplified Too	ls and Techniques by Bj	orn Andersen (June 2006)						
Cour	rse Designers									
S.No	. Faculty Name	Designation	Department/Name of the College	Email id						
1	K.Vijayakumar	Assistant Professor	Mech / AVIT	<u>vijayakumar@avit.ac.in</u>						

17M	ESE12	, 1				CYCI	LE	Cate	egory	L		Т	Р	Cr	edit
1/101	LSEIZ	'	Μ	[ANA	GEMI	ENT		EC	(SE)	3		0	0		3
Pream To ena		stude	nts to 1	unders	tand tl	he vari	ous pi	oduct	life m	anagem	ent too	ls & I	PLM conc	cepts	
Preree	quisite	NIL													
Cours	e Obje	ctive													
1	To und	erstand	d the p	roduct	t life c	ycle m	anage	ment o	of a pr	oduct					
2	To und	erstand	d the p	rocess	flow,	work	flow,	& proc	luct da	ata man	agemer	nt			
3	To Uno	lerstan	d the o	concep	ots of r	new pro	oduct	develo	pmen	t					
-	To Uno	lerstan	d the d	concep	ots of r	new pro	oduct	develo	pmen	t					
5	Produc	t life c	ycle m	nanage	ment s	strateg	y and	PLM a	assessi	ment.					
Cours	e Outo	omes:	On th	ne suco	cessfu	l comp	oletion	n of th	e coui	rse, stu	dents w	vill be	able to		
CO1.	Und	erstand	l produ	uct dat	a. info	ormatio	on. stru	uctures	s and I	PLM co	ncepts.		Understa	and	
CO1.			•							erations	-		Understa		
CO2.					-	nd qual									
CO3.	App	ly PLN	1 conc	epts fo	or serv	vice ind	lustry	and E	-Busir	ness.			Apply		
	Reco	omize	tools	and sta	ndard	s in PL	м						Understa	and	
CO4.		-						cals in	cludin	g produ	iction. a	after	Apply		
CO5.		•	•		-	d subc				01			11.2		
Марр	ing wit	th Pro	gramr	ne Ou	tcome	es and	Prog	ramm	e Spec	cific Ou	itcomes	5			
СО	PO1	1	-						_	1		-	PSO 1	PSO 2	PSO 3
CO1	S		5	Т			,		,		1		L	2	
CO2	S	S	S	S						S			L		
CO3	S	M	L	5											
CO4	S S	М	L												
CO5		S	Μ	L	1			1		1	1	L	L	1	1

INTRODUCTION TO PRODUCT LIFE CYCLE MANAGEMENT

Definition - PLM Lifecycle model - Threads of PLM - Need for PLM - Opportunities and benefits of PLM - Views - Components and Phases of PLM - PLM feasibility study - PLM visioning -Characteristics of PLM - Environment driving PLM - PLM Elements - Drivers of PLM -Conceptualization - Design - Development - Validation - Production - Support of PLM

PRODUCT DATA MANAGEMENT (PDM) PROCESS AND WORKFLOW

Engineering vaulting - product reuse - smart parts - engineering change management - Bill of materials and process consistency - Digital mock-up and prototype development - design for environment - virtual testing and validation - marketing collateral.

COLLABORATIVE PRODUCT DEVELOPMENT

Steady one-dimensional convection and diffusion – Central, upwind differencing schemes properties of discretization schemes - Conservativeness, Boundedness, Transportiveness, Hybrid, Power-law, QUICK Schemes.

DIGITAL MANUFACTURING – PLM

Digital manufacturing - benefits manufacturing - Manufacturing the first-one - Ramp up - virtual learning curve - manufacturing the rest - production planning.

DEVELOPING A PLM STRATEGY AND CONDUCTING A PLM ASSESSMENT

Strategy - Impact of strategy - implementing a PLM strategy - PLM initiatives to support corporate objectives - Infrastructure assessment - assessment of current systems and applications.

1	Stark, John. Product Lifecycle Management: Paradigm for 21st Century Product Realisation, Springer-Verlag, 2004.
2	Product Lifecycle Management, Michael Grieves, Tata McGraw Hill 2012
Refere	ence Books

1	Fabio Giudice, Guido La Rosa, Product Design for the environment-A life cycle approach, Taylor & Francis 2006											
Cours	e Designers											
S.No	Faculty Name	Denartment/Name										
1	M.SARAVANA KUMAR	ASST. PROF GRII	MECH./ AVIT	saravanakumar@avit.ac.in								

17MF	ESE13	GI	GEOMETRIC MODELLING		DELLI	NG	Cate	egory	L		Г	Р	Cre	edit	
	201213	01					NG.	EC	(SE)	3		0	0		3
mani	cours	on, rep	oresent	ation,									ques for odeling a		
Prereq Nil	luisite														
Course	e Obje	ctive													
1 7	Fo lear	n the n	nodeli	ng of c	curves	using B	Bezie	r and I	B-splir	ne appro	oximati	ons;			
2 7	Γo stud	y2 D a	and 3 I) trans	forma	tions to	surf	aces;							
3 7	Fo lear	n surfa	ice sub	odivisi	on and	l reconst	truct	ion tec	chniqu	es;					
						-	-				^		CAD sys		
													uding me gy, and o		ration
Course	e Outc	omes:	On th	e suco	essfu	l compl	etior	n of th	e cour	se, stu	dents w	ill be	able to		
CO1.	Unde	erstand	ling va	rious	Algori	thms in	moc	leling					Understa	ind	
CO2.	Knov	w the c	concep	ts of g	eomet	ric trans	sforn	nation	s				Understa	ınd	
CO3.						ructures		v					Apply		
CO4.					-	urfaces		solids					Apply		
CO5.	Anin	hate th	e vario	ous gra	aphica	l structu	ires						Analyze		
Mappi	ing wit	h Prog	gramn	ne Ou	tcome	es and P	rogi	ramm	e Spec	cific Ou	tcomes	5			
CO	PO1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3
CO1	S	L	L	L	L	М	-	-	-	-	-	-	L	-	-
CO2	S	Μ	М	L	L	-	-	-	-	-	-	I	L	-	-
CO3	S	S	S	S	L	-	-	-	-	-	-	-	L	-	-
CO4	S	S	S	S	L	-	-	-	-	-	-	-	L	-	-
CO5	S	M	S	S	S	-	-	-	М	L	-	-	L	-	-
S- Stro	ong; M	-Medi	ium; I	L-Low				I		I	1			1	<u> </u>

MATHEMATICAL REPRESENTATION OF GRPAHICS PRIMITIVES

Points and lines. Line algorithms – DDA algorithm, Bresenham's algorithm and parallel line algorithms. Circle and Ellipse generation algorithms. Character generation, fill area functions.

2D & 3D TRANSFORMATIONS OF GEOMETRY AND PROJECTIONS

2D Translation, 2D Scaling, 2D Reflection, 2D Rotation, Homogeneous representation of transformation, Concatenation of transformations

3D Translation, 3D Scaling, 3D Reflection, 3D Rotation, Homogeneous representation of transformation, Concatenation of transformations, Perspective, Axonometric projections, Orthographic and Oblique projections

DESIGN OF CURVES

Analytic Curves, PC curve, Ferguson, Composite Ferguson, curve Trimming and Blending, Bezier segments, de Casteljau's algorithm, Bernstein polynomials, Bezier- subdivision, Degree elevation, Composite Bezier, Splines, Polynomial Splines, B-spline basis functions, Properties of basic functions, Knot Vector generation, NURBS.

DESIGN OF SURFACES AND SOLIDS

Design of Surfaces: Differential geometry, Parametric representation, Curves on surface, Classification of points, Curvatures, Developable surfaces, Surfaces of revolution, Intersection of surfaces, Surface modelling, 16-point form, Coons patch, B-spline surfaces.

Design of Solids: Solid entities, Boolean operations, B-rep of Solid Modelling, CSG approach of solid modelling, Advanced modelling methods

COMPUTER ANIMATION

Computer animation, animation systems, types and technique, design applications, Computer Graphics Standard

I OAU D	oons												
1	Michael E Mortense	on, "Geometric m	odeling". John Wiley &	& Sons Inc., Second edition, 2010									
2	Ibrahim Zeid and S Publications, New I	· · · · · · · · · · · · · · · · · · ·	R., CAD/CAM Theory	and Practice, Tata McGraw Hill									
Refere	ice Books												
1	. David F. Rogers, J. A. Adams, Mathematical Elements for Computer Graphics, TMH, 2008.												
2	Radhakrishnan P &Kothandaraman C P, "Computer Graphics and Design", DhanpatRai and Sons,2008												
Course	e Designers												
S.No	Faculty Name	Designation	Department/Name of the College	Email id									
1	M.SARAVANA KUMAR	ASST. PROF GRII	MECH./ AVIT	saravanakumar@avit.ac.in									

17M	ESE1	1		REVE	DSE E	NCINE	FDIN	IC		Categ	jory	L	Т	Р	Credit
1/111	LSLI	•	1	NE V EI	NOL LI	INGINE		G		EC(S	SE)	3	0	0	3
requir	ourse ement	revie s, a s	uitable		e engi	neering	syste	m for							istomer's gineering
PREF NIL	REQU	ISIT	E												
COUI	RSE C	BJE	CTIVI	ES											
1	To ir	ntrodu	ice the	various	steps	involve	d in re	everse	engine	ering					
2	To u	nders	tand th	e desig	n of a p	product	based	on cus	stomer	require	ements				
3	To ir	ntrodu	ice a si	iitable r	everse	engine	ering s	system	for in	spectio	n and m	anufact	uring		
4	To k	now t	he RE	applica	tions ii	n aerosp	bace, a	utomo	tive a	nd med	ical sect	ors.			
COU	RSE C	OUTC	COME	S											
On the	e succe	essful	compl	etion of	the co	ourse, st	udents	s will t	e able	e to					
CO1.1	dentif	y the	steps in	nvolved	l in rev	erse en	gineer	ing of	a give	n comp	onent.		Unde	erstand	
			l fabric		existin	g comp	onent	with s	suitabl	e modi	fications	s as per	Appl	у	
	Select	and o		ire a sui	table r	e-engin	eering	syster	n for i	nspecti	on and		Appl	у	
CO4.		the re	e-engin	eering t	echniq	ues in a	aerosp	ace, au	ıtomol	oile and	l medica	1	Appl	У	
		WIT	H PR(OGRAN	MME	OUTC	OMES	S AND	PRO	GRAN	IME SP	ECIFI	C OUT	COMES	
COS	PO 1	PO 2	PO 3	PO4	PO 5	PO6	PO 7	PO 8	PO 9	PO1 0	PO11	PO1 2	PSO1	PSO2	PSO3
CO1	S	L	М	М	М					L					
CO2	S	М	S	М	S	М				S					
CO3	S	S	S	М	S		М		М	М					
CO4	S	S	S	S	S	М	М		S	S	М	М			
S- Str	ong; N	A-Me	edium;	L-Low	7										

GEOMETRIC MODELLING USING POINT CLOUD DATA: Point Cloud acquisition, Surface Modelling from a point clouds, Meshed or Faceted Models, Planar Contour Models, Points to Contour Models, Surface Models, Segmentation and Surface Fitting for Prismatic objects and Free Form Shapes.

METHODOLOGIES AND TECHNIQUES FOR RE-ENGINEERING: The Potential for Automation with 3-D Laser Scanners, What Is Not Re-Engineering, What is Computer-aided (Forward)Engineering, What Is Computer-aided Reverse Engineering, Computer Vision and Re-Engineering.

SELECTING A RE-ENGINEERING SYSTEM: The Selection Process, Some Additional Complexities, Point Capture Devices, Triangulation Approaches, "Time-of-flight" or Ranging Systems, Structured-light and Stereoscopic Imaging Systems, issues with Light-based Approaches, Tracking Systems, Internal Measurement Systems, X-ray Tomography, Destructive Systems, Some Comments on Accuracy, Positioning the Probe, Post processing the Captured Data, Handling Data Points, Curve and Surface Creation, Inspection Applications, ManufacturingApproaches.

INTEGRATION BETWEEN RE-ENGINEERING AND ADDITIVE MANUFACTURING:Modeling Cloud Data in Re -Engineering, Data Processing for Rapid Prototyping, Integration of RE and RP for Layer-based Model Generation, Adaptive Slicing Approach for Cloud Data Modeling, Planar Polygon Curve Construction for a Layer, Determination of Adaptive Layer Thickness.

RE-ENGINEERING IN AUTOMOTIVE, AEROSPACE, MEDICAL SECTORS: Legal Aspects of Re-Engineering: Copyright Law, Re-Engineering, Recent Case Law, Barriers to Adopting Re-Engineering. A discussion on a few benchmark case studies.

TEXT BOOKS:

1. Reverse Engineering: An Industrial Perspective by Raja and Fernandes, Springer-Verlag 2008.

REFERENCES:

1. K. Otto and K. Wood, Product Design: Techniques in Reverse Engineering and New Product Development, Prentice Hall, 2001.

	RSE DESIGNERS			
S.No ·	Name of the Faculty	Designation	Department / Name of the College	Mail ID
1	SHIVAKUMAR N	Asst. Prof II	Mechanical, AVIT	shiva.thermal@gmail.com

17\/	ESE15		CLIDD	LY CH			ENTER	NТ	Ca	ategory	L	Г		P (Credit
1/1011	LSEIS		5011			ANAG		11]	EC(SE)) 3	0)	0	3
The stu	MBLE udent w	ill und	derstan	d in deta	ail abou	t the ba	sics in	suppl	y chai	n and th	inven	itory co	ntrol mo	dels ava	ilable
PRER	EQUIS	SITE:	NIL												
COUR	RSE OI	BJEC	TIVES	5											
1	To und	lerstar	nd the l	basic iss	ues in S	upply (Chain 1	Manag	ement	;					
2	To und	lerstar	nd the	various s	strategic	sourci	ng and	decis	ions						
3	To und	lerstar	nd the	various i	nventor	y contr	ol moo	lels							
4	To und	lerstar	nd the	various i	nformat	tion too	ols								
5	To und	lerstar	nd the	various s	supply c	hain in	tegrati	on pro	cesses	5					
COUR	RSE OU	UTCO	MES												
On the	succes	sful co	omplet	ion of th	e cours	e, stude	ents wi	ll be a	ble to						
CO1.				orking p ainty and	-	e and D	evelop	oment	chain-	Global	optimiz	zation-		Under	stand
CO2.	Iden	tifying	g core p	processe	s - Marl	ket Vs I	Hierard	chy - N	Iake V	/sbuy c	ontinuu	ım		Under	stand
CO3.	Unde	erstan	d the w	orking p	principle	e of inv	entory	contro	ol-Eco	nomic	lot size	model.		Under	stand
CO4.	Unde	erstan	d the w	orking p	orinciple	e of Sup	oply cl	nain co	ordina	ation str	ructures			Ap	ply
CO5.	Unde	erstan	d the S	trategies	Distrib	ution S	trategi	ies-Dii	ect sh	ipment	distribu	ition		Ap	ply
MAPF	PING V	VITH	PRO	GRAMN	AE OU	ГСОМ	IES AI	ND PH	ROGR	AMM	E SPE(CIFIC	OUTCO	MES	
CO S	PO1	PO 2	PO 3	PO4	PO5	PO6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3
CO1	S	М	L	L				L				М	L		
CO2	S	М	М	L				М				М	L		
CO3	S	М	М	L				L				М	L		
CO4	S	S	S	М	L			М				М	L		
CO5	S	S	S	М	М			М				М	L		
S- Stro	ong; M	-Med	ium; I	L-Low		_		_							

Syllabus

Introduction to SCM

Development chain-Global optimization-Managing uncertainty and risk-Evolution of SCM- Complexity of SCM-Why SCM?-Key Issues in SCM

Strategic Sourcing

Outsourcing – Make Vs buy - Identifying core processes - Market Vs Hierarchy - Make Vsbuycontinuum - ourcing strategy - Supplier Selection and Contract Negotiation. Creating a worldclass supply base- Supplier Development - World Wide Sourcing.

Inventory Management & Risk Pooling

Introduction and forms of inventory-Single stage inventory control-Economic lot size model- Effect of demand uncertainty-Single period models-Initial inventory-Multiple order opportunities-Periodic review policy-ontinuous review policy

The Value of Information

The bullwhip effect-Supply chain coordination structures-Information sharing & incentives Information and supply chain trade-offs-Centralized and decentralized decision making and performance impacts-Learning organization principles -Structure-process-event dependencies- Functional Products-Innovative products-Efficient supply chains-Responsive supply chains-Agile supply chains

Supply Chain Integration

Push, pull, and push-pull systems-Demand-driven strategies-Impact of lead time-Impact of the Internet on supply chain-strategiesDistribution Strategies-Direct shipment distribution-Intermediate inventory storage pointstrategies-Transhipment

Text Books:

1. Janat Shah, Supply Chain Management – Text and Cases, Pearson Education.

2. Sunil Chopra and Peter Meindl, Supply Chain Management-Strategy Planning and Operation, PHI Learning / Pearson Education.

Reference:

 Ballou Ronald H, Business Logistics and Supply Chain Management, Pearson Education,
 David Simchi-Levi, Philip Kaminsky, Edith Simchi-Levi, Designing and Managing the SupplyChain: Concepts, Strategies, and Cases, Tata McGraw-Hill

S.N o	Name of the Faculty	Designation	Department / Name of the College	Mail ID
1	SAMUVEL MICHAEL	Asso.Prof Gr-II	MECH/AVIT	samuvelmichael@avit.ac.in

ELECTIVE COURSES SPECIALIZATION – THERMAL ENGINEERING

2 То 3 То 4 То 5 То Соитее Он ап	e letion of tl lso studer site CERING 7	ts are ab THERM the fund nd the th nd the k	e, the st le to ge ODYN amental	tudents t the k AMIC l know	s are a nowle	ble to	unders			epts of o				3
On comple flames. Als Prerequisi ENGINER Course Ol 1 To 2 To 3 To 3 To 4 To 5 To Course Ol 6 A To 5 Fo an	letion of th lso studer site Derive Diffective Defective	ts are ab THERM the fund nd the th nd the k	le to ge ODYN amental	t the k	nowle								el and	
1 To 2 To 3 To 4 To 5 To Course Or Fo CO1. Fo Ref	o Acquire o Understa o Understa o Understa	nd the th nd the k	nermody		ledge									
2 To 3 To 4 To 5 To Course Ou col. Fo an Reference	o Understa o Understa o Understa	nd the th nd the k	nermody		ledge									
3 To 4 To 5 To Course Ou CO1. Fo an	o Understa o Understa	nd the k		momi		of con	nbusti	on.						
4 To 5 To Course Ou CO1. Fo an	o Understa			ynanno	cs of c	ombus	stion.							
5 To Course Ou CO1. Fo an			inetics of	of com	bustic	on.								
Course Ou CO1. Fo an	o Understa	na the ty	pes of	flames	5.									
CO1. Fo		nd the c	ombusti	ion asp	pects in	n SI ar	nd CI I	Engine	s.					
COI. an	Outcomes	On the	success	sful co	mplet	ion of	the c	ourse,	studen	ts will l	oe able t	0		
CO2 Re	Formulate nd polluta				to dete	ermine	e A/F,	adiaba	tic flam	e tempe	erature		Apply	
CO2. mo	Relate the thermo chemistry and kinetics of combustion to evolve mathematical models for combustion. Analyze													÷
	Rate of phy nd rate of						ition, J	propag	ation ar	nd extin	ction,	U	nderstai	nd
	dentify fac he differer												Apply	
	ummarize echniques	emissio	n assoc	iated v	with co	ombust	tion ar	ıd iden	tify the	ir contro	ol	1	Analyze	3
Mapping	e with Pro	gramme	e Outco	omes a	nd Pr	ogran	ıme S	pecific	Outco	mes				
CO P	PO 1 PO2		PO4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO12	PSO 1	PSO 2	PSO 3
CO1	S S	М	М	-	-	L	_	-	_	L	-	L		
CO2	S S	М	-	-	-	-	-	-	-	L	-	L		
CO3	S M	М	М	-	-	-	-	-	-	L	-	L		
CO4	S S	М	L	-	-	М	-	-	-	Μ	-	L		
CO5	L M	М	S	-	М	S	-	-	-	М	-	L		
S- Strong;	g; M-Med	ium; L-	Low	_	_	_	_							
SYLLAB														

COMBUSTION OF FUEL

Introduction - Combustion equations - Theoretical air - Excess air - Air fuel ratio - Equivalence ratio - Exhaust gas composition - Air fuel ratio from exhaust gas composition - Heating value of fuels.

COMPRESSION IGNITION ENGINES

Thermo-chemistry, first law analysis of reacting systems - Adiabatic combustion temperature - Second law analysis of reacting systems - Criterion for chemical equilibrium - Equilibrium constant for gaseous mixtures - Evaluation of equilibrium composition - Chemical availability

KINETICS OF COMBUSTION

Rates of reaction - Reaction order and complex reactions - Chain Reactions, Arrhenius rate equation, collection theory - Activated complex theory - Explosive and general oxidative characteristics of fuels.

FLAMES

Laminar and turbulent flames - Premixed and diffusion flames - Burning velocity and its determination - Factors affecting burning velocity - Quenching, flammability and ignition - Flame stabilization in open burners

ENGINE COMBUSTION

Combustion in SI and CI engines - Stages of combustion in SI and CI engines - Normal combustion and abnormal combustion - Emissions from premixed combustion - Emission from non-premixed combustion - Control of emissions

1	Ganesan.V, "Internal Combustion Engines", Tata McGraw-Hill, New Delhi.											
2	Ramalingam.K.K, "Internal Combustion Engines - Theory and practice", SciTech Publications India Pvt. Ltd., Chennai, 2010.											
3	Stephen.R.Turns, "An Introduction to Combustion concepts and applications", McGraw Hill Book Company, Boston, 3 rd Edition, 2011.											
Refere	ence Books											
1	Thipse.S.S, "Internal Combustion Engines", Jaico Publication House.											
2	Thipse.S.S, "Alternate Fuels", Jaico Publication House.											
3	Heywood.J.B, "Internal Combustion Engine Fundamentals", McGraw Hill International, New York.											
4	Mathur. R.B. and R.P. Sharma, "Internal Combustion Engines"., Dhanpat Rai & Sons.											
5	Domkundwar.V.M	, "A course in Internal Combu	stion Engines", Dhanpat R	ai & Sons.								
Cours	e Designers											
S.No	Faculty Name	Designation	Department/ Name of the College	Email id								
1	S.PRAKASH	Assistant Professor (Gr-II)	Mech / AVIT	prakash@avit.ac.in								

17ME	SF25	(COME				LUID	Cate	egory	L		Т	Р	Cr	edit
1/10112	6E25			DYN	IAMI	CS		EC	EC(SE)	3		0	0		3
equat equat	course tions tions a	that a ind pai	rise in rtial di	n flui fferen	d dyn tial eq	amics. uation	Funda	mental to flu	ls of id med	numeri chanics	cal ana and he	alysis	ent type o , ordinary nsfer will	y differ	ential
Prereq	1	-	neering Mech	-	-										
Course	Obje	ctive													
1 T	To understand basic properties of computational methods														
2 T	To introduce Governing Equations of viscous fluid flows														
-	To learn computational solution techniques for time integration of ordinary differential														
	equations To introduce numerical modeling and its role in the field of fluid flow and heat transfer														
5 T	To enable the students to understand the various discretization methods, solution procedures and turbulence modeling.														
					essfu	l comp	letion o	f the c	ourse	, studer	nts will	be a	ble to		
CO1.						_	outationa						Understa	nd	
CO2.	Disc	uss the	Gove	rning	Equati	ons of	viscous	fluid f	flows				Understa		
CO3.							lution te	chniqu	les for	time in	tegratio	n	Analyze		
CO4.	Solv	e prob	differ lems in	ential n num	equati erical	ons modeli	ng and i	ts role	in the	field of	f fluid f	low	Analyze		
		neat tra rmine		rious o	liscret	ization	method	s. solu	tion p	rocedur	es and		Apply		
CO5.			model					, 	1				11 5		
Mappi	ng wit						Program		-						
СО	PO1	PO 2	PO 3	РО 4	PO 5	PO 6	PO7	PO 8	PO 9	PO1 0	PO1 1	PO 2	1 PSO 1	PSO 2	PSO 3
CO1	S	М	М	L	M	L	_	-	-	-	-	L	L	-	_
CO2	S	М	М	L	L	L	-	-	-	-	-	-	L	-	L
CO3	S	М	М	L	L	L	-	-	-	-	-	L	L	-	L
CO4	S	S	S	М	L	L	-	-	-	-	-	-	L	-	L
CO5	М	М	М	L	L	М	-	-	-	-	-	-	L	-	L
S- Stro	ng: M	-Medi	ium: T	-Low											
	0,		, 1												
SYLLA	ABUS														

INTRODUCTION

Computational Fluid Dynamics, Advantages, Applications, Future of CFD. Problem set up-pre-process, Numerical solution – CFD solver

GOVERNING EQUATIONS FOR CFD

Introduction, the continuity equation, the momentum equation, the energy equation, the additional equations for turbulent flows, generic form of the governing equations for CFD, boundary conditions.

CFD TECHNIQUES

Derivation of finite difference equations – Simple Methods – General Methods for first and second order accuracy- Finite volume formulation for steady state One, Two and Three -dimensional diffusion problems

FLOW FIELD ANALYSIS

Finite volume methods -Representation of the pressure gradient term and continuity equation – Staggered grid – Momentum equations – Pressure and Velocity corrections – Pressure Correction equation, SIMPLE algorithm and its variants – PISO Algorithms.

TURBULENCE MODELS AND MESH GENERATION

Turbulence models, mixing length model, Two equation (k-) models – High and low Reynolds number models – Structured Grid generation – Unstructured Grid generation – Mesh refinement – Adaptive mesh – Software tools.

Text Books

ICAU	000K5
1	Versteeg, H.K., and Malalasekera, W.,"An Introduction to Computational Fluid Dynamics": The finite volume Method, Pearson Education Ltd. Third Edition – 2014.
2	Ghoshdastidar, P.S., "Computer Simulation of flow and heat transfer", Tata McGraw Hill Publishing Company Ltd.,

Reference Books

Kelere	ence books									
1	John D. Anderson "Computational Fluid Dynamics - The basics with Applications", McGrawHill International Editions.									
2	Anil W. Date, "Introduction to Computational Fluid Dynamics", Cambridge University Press, Reprinted 2010.									
3	Yogesh Jaluria & Kenneth E. Torrance, "Computational Heat Transfer", CRC press, 2nd Edition.									
4	John. F. Wendt, "Computational Fluid Dynamics – An Introduction", Springer, Third Edition, 2013.									
Cours	e Designers									
S.No	Faculty Name	Designation	Department/Name of the College	Email id						
1	S.PRAKASH	Assistant Professor (Gr-II)	Mech / AVIT	prakash@avit.ac.in						
2										

17MESE26					OGEN			Ca	ategor	y 2	L	Т	Р	Cre	edit	
		0		I	ENGI	NEER	ING		Ε	C(SE))	3	0	0		3
		•			knowl	edge o	of cryo	genic	refrige	eration	system	ıs, cryo	genic ins	strument	tation ar	nd
Prer	Prerequisite ENGINEERING THERMODYNAMICS															
	Course Objective															
1	To pr	To provide the knowledge of evolution of low temperature science														
2	To pr	rovic	le kno	wledg	e on t	he pro	perties	s of ma	aterials	s and g	gas sepa	aration	systems			
3	To fa	mili	arize	with v	arious	vacu	um tec	hniqu	es syst	tems						
4	To pr	rovic	le des	ign as	pects o	of cryo	genic	storag	e and	transfe	er lines					
5	To pr	rovic	le the	know	ledge	of adv	ances	in cry	ogenic	cs						
Cour	Course Outcomes: On the successful completion of the course, students will be able to															
CO1.	U	Understand properties of material at cryogenic temperatures Understand														
CO2.	. To	o uno	dersta	nd the	prope	rties o	f mate	erials a	ind gas	s separ	ation s	ystems		Under	stand	
CO3.	. Kı	now	about	t vario	us vac	uum te	echniq	ues sy	vstems					Apply		
CO4.	To	o uno	dersta	nd the	cryog	enic re	efriger	ation s	system	IS				Under	stand	
CO5.	. Uı	nder	stand	the cr	yogeni	ic instr	umen	tation	and cr	yogen	ic heat	exchan	gers	Under	stand	
Мар	ping w	vith	Prog	ramm	e Out	comes	and I	Progra	amme	Speci	fic Out	comes				
CO	PO	01	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO12	PSO 1	PSO 2	PSO 3
CO	1 5	S	L		М			L					L	L		
CO2	2 5	S	М									L	L	L		
CO3	3 5	S M M L														
CO4	4 5	S M M L L S M L														
CO:	5 5	S	М		S	М		L				S	М	L		S

S- Strong; M-Medium; L-Low

SYLLABUS

INTRODUCTION TO CRYOGENIC SYSTEMS

Properties of materials at low temperature, Properties of Cryogenic Fluids - Air and Gas Liquefaction Systems: Thermodynamically ideal system, Production of low temperatures

Liquefaction systems for gases other than Neon, Hydrogen and Helium, liquefaction systems for Neon, Hydrogen and Helium - Cryogenic Refrigeration System

GAS SEPARATION AND GAS PURIFICATION SYSTEMS

The thermodynamically ideal separation system properties of mixtures, Principles of gas separation, air separation systems, Hydrogen, Argon, Helium air separation systems, Gas purification methods.

VACUUM TECHNIQUES

System for production of high vacuum such as mechanical, diffusion, ion and cryopumps - Cryogenics measurement systems - Temperature pressure, flow rate, liquid level measurement, Introduction to Cryocoolers.

CRYOGENIC FLUID STORAGE SYSTEMS

Introduction, Basic Storage vessels, inner vessel, outer vessel design, piping, access manways, safety device.Cryogenic insulations Vacuum insulation, gas filled powders and fibrous materials, solid foam, selection and comparison of insulations. Cryogenic fluid transfer systems. Transfer through uninsulated lines, vacuum insulated lines, porous insulated lines etc.

ADVANCES IN CRYOGENICS

Vortex tube and applications, Pulse tube refrigerator, Cryogenic Engine for space vehicles. Cryogenic Applications in gas industry, cryogenic fluids, space research, Cryobiology, food processing, electronics, nuclear and high energy physics, chemical processing, metal manufacturing, cryogenic power generation, medicine, analytical physics and chemistry.

Text	xt Books										
1	Cryogenic Systems – R.F. Barron										
2	Cryogenic Engineerin	g – R.B. Scott –	D.Van Nostrand Compa	ny, 1959							
Refer	erence Books										
1	Cryogenic Process Engineering – K.D. Timmerhaus and T.M. Flynn, Plenum Press, New York, 1989										
2	High Vacuum Technol	ogy – A. Guthree	e – New Age Internation	al Publication							
3	Experimental Techniques in Low Temperature Physics – G.K. White – Oxford University Press, England, 1959										
Cour	se Designers										
S.No	Faculty Name	Email id									
1	Dr.M.Prabhahar Asso Prof Mech / AVIT mprabhahar@avit.ac.in										

17MI	ESE27		POW	VER P	'LAN'	Γ		Cat	egory	L		т	Ρ	Cr	edit
1/1/1				ENGI	NEEI	RING		EC	C(SE)	3		0	0		3
mach gener	r Plant ineries ation of	in the f	proces ic pow	s of po ver.	wer ge					ng the th e the bac					
	quisite		mal Er	nginee	ring										
	To uno		d the	objecti	ves of	power	plants	in a co	ountry'	s electri	cal po	wer requ	irement		
2	To uno	derstan	d the	operati	onal m	ethods	of po	wer ge	neratio	on using	differ	ent ener	gy sour	ces.	
3	To pro	ovide tl	ne kno	wledge	e of ins	strumer	ntation	involv	ved in	the opera	ation a	and contr	rol of po	ower pla	ints
4							-	-		n differe	• -	-	-	its.	
5	To inculcate the knowledge of environmental impact of power plants on the society.														
Cours	se Outc	omes:	On th	e succe	essful o	comple	tion o	of the c	ourse	, studen	ts will	be able	to		
CO 1.	Under source		the me	ethods	of pov	ver gei	neratio	on usir	ng diff	erent en	ergy		U	Indersta	and
CO 2.	To sta	ate the	instru	mentati	ion and	l contro	ol syst	ems fo	r a pov	wer plan	t		U	Understa	and
CO 3.	To cal	culate	the co	st of po	ower g	enerati	on for	a typic	al pov	ver plant				Apply	7
CO 4.	To inf	er the	enviro	onmen	tal imp	pacts of	f pow	er plar	its on	the socie	ety			Apply	7
CO 5.	Prepar	e a lay	out fo	r diffei	ent po	wer pla	ints							Apply	7
Марр	oing wit	th Prog	gramm	ne Outo	comes	and Pr	ogran	nme Sp	ecific	Outcom	es		1		
СО	PO 1	PO 2	PO 3	РО 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10	PO 11	PO12	PSO 1	PSO 2	PSO3
C01	M	M	S	-	-	-	-	_			_		M	M	М
CO2	S	М	М	М	М	-	-						М	S	М
CO3	М	S	S	S	-	-	-						M	М	S
CO4	М	S	S	S	М	М	S						М	М	S
CO5	S	S	S	S	S	S	-						М	S	S
S_ Str	ong; M	-Medi	um; L-	Low	1	<u> </u>		I				<u>I</u>	1	1	<u> </u>

INTRODUCTION

Power Generation: Global Scenario, Present status of power generation in India, Role of private and governmental organizations, Load shedding, Carbon credits, Power reforms, concept of cascade efficiency.

General layout of modern power plant with different circuits, working of thermal power plant, coal classification, coal, ash and dust handling, selection of coal for Thermal Power Plant, FBC boilers, high pressure boiler, cogeneration power plant (with numerical)

Steam Condenser: Necessity of steam condenser, Classification, Cooling water requirements, Condenser efficiency, Vacuum efficiency, Cooling towers, air Leakage, Effects of Air Leakage on condenser performance, (Numerical Treatment)

HYDROELECTRIC AND NUCLEAR POWER PLANTS

HEPP : Introduction, Plant Layout, Site Selection, Advantages and Disadvantages of HEPP, Hydrograph , Flow duration curve ,Mass Curve, Classification of HEPP with layout.

NPP : Elements of NPP, Nuclear reactor & its types, fuels moderators, coolants, control rod, classification of NPP, N-waste disposal

DIESEL & GAS TURBINE POWER PLANT

DEPP : Plant Layout, Diesel Engine Power Plant Performance Analysis, application, selection of engine size, advantages & disadvantages of diesel power plant.

GTPP : Introduction, fuels, materials selection for GTPP, Brayton Cycle analysis, Thermal Efficiency, Work ratio, maximum & optimum pressure ratio, Actual cycle effect of operating variables on thermal efficiency, inter-cooling reheating, & regeneration cycle, Open, Closed & Semi Closed cycles Gas Turbine Plant, combined cycle plant (Numerical Treatment).

NON-CONVENTIONAL POWER PLANTS

Wind Power plant : Introduction, wind availability measurement, types of wind machines, site selection, and wind power generation.

Solar Power Plant : Introduction, components ,Types of Collectors & Solar Ponds, Low & High Temperature Solar Power Plant. Photovoltaic Power System, Heliostat

Tidal, OTEC, geothermal, magneto hydrodynamics, fuel cell, hybrid power plants, Challenges in commercialization of Non-Conventional Power Plants.

INSTRUMENTATION, ECONOMICS AND ENVIRONMENTAL IMPACT

Power Plant Instrumentation Layout of electrical equipment, generator, exciter, short circuits & limiting methods, switch gear, circuit breaker, power transformers, methods of earthing, protective devices & Control system used in power plants, Control Room.

Economics of Power Generation: Introduction, Cost of electric energy, Fixed and operating cost, (with

numerical treatment), Selection and Type of generation, Selection of generation equipment, Performance and operation characteristics of power plants and Tariff methods.

Environmental impact due to power plants. Environmental aspects, introduction, constituents of atmosphere, different pollutants due to thermal power plants and their effects of human health, Environmental control of different pollutant such as particulate matter, Oxides of sulphur, nitrogen, global warming & green house effect, thermal pollution of water & its control. Noise pollution by power plants.

Text	Books										
1	E.I.Wakil, Power Plan	nt Engineering	, McGraw Hill Publica	tions New Delhi							
2	P.K.Nag, Power Plant Engineering , McGraw Hill Publications New Delhi										
3	K K Ramalingam, Power Plant Engineering, SCITECH Publications Pvt Ltd.										
4	Domkundwar & Arora, Power Plant Engineering , Dhanpat Rai & Sons, New Delhi										
Refe	rence Books										
1	R.K.Rajput, Power Plant Engineering , Laxmi Publications New Delhi										
2	R.Yadav, Steam and	Gas Turbines	,Central Publishing Ho	use, Allahabad							
3	G.D.Rai, Non-Conve	ntional Energy	Sources Khanna Publ	ishers,Delhi							
4	S.P.Sukhatme, Solar I	Energy Tata M	IcGraw-Hill Publication	ns, New Delhi							
Cour	se Designers										
S.N o	Faculty Name	Designation	Department/Name of the College	Email id							
1	N.Lakshminarayanan	Associate Professor	MECH / AVIT	nlakshminarayanan@avit.ac.in							
2	K.Surendar Babu	Surendar Babu Associate MECH / AVIT surendrababu@avit.ac.in Professor Professor Professor Professor									

17MESE28		R) AIR	Ca	ategor	y	L	Т	Р	Cre	edit	
				C	OND	ITION	NING		E	C(SE))	3	0	0		3
	mble cours		vides	the un	derlvi	ng prij	nciples	s of op	eratio	n in di	fferent	Refrige	eration 8	z Air coi	nditionii	ng
syste	ms ar	nd con	mpone		5	01	T	1				0				0
Prer NIL	equis	ite														
Cou	Course Objective															
1	Toi	To impart knowledge on refrigeration cycles and methods to improve performance														
2	To f	famili	arize	the co	mpone	ents of	refrig	eratior	ı syste	ems						
3	To F	Perfor	rm psy	chron	netric	calcula	ations									
4	To i	ntrod	uce ai	r cond	litionii	ng syst	tems									
5	To k	know	the ap	oplicat	ions o	f refrig	geratio	n and	air co	nditior	ning sy	stems				
Cour	Course Outcomes: On the successful completion of the course, students will be able to															
CO1	. 0	Carry out analysis of refrigeration cycles Understand														
CO2			stand leratio		inciple	es refri	geratio	on of a	air-con	dition	ing and	l basic	design	Under	stand	
CO3			. .	chrom g proce		calcula	tions,	humic	lity co	ntrol a	ind ana	lysis of	air-	Apply		
CO4	. A	Apply	the co	oncept	s of in	idoor e	enviroi	nmenta	al com	ıfort.				Apply		
CO5	. K	Know	the va	arious	applic	ations	of Re	frigera	ation a	nd air	conditi	ioning		Under	stand	
Мар	ping	with	Prog	ramm	e Out	comes	and F	Progra	mme	Specif	fic Out	tcomes				
CO	P	PO1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO12	PSO 1	PSO 2	PSO 3
CO	1	S	L		L			L					L	L		
CO	2	S	М										L	L		
CO	3	S	S	М	М									М		
CO	4	S	S	М	М									М		
CO	5	S	М		М	М		L					М	L		

S- Strong; M-Medium; L-Low

SYLLABUS

REFRIGERATION CYCLE

Review of thermodynamic principles of refrigeration. Carnot refrigeration cycle – Vapour compression refrigeration cycle – use of P.H. charts – multistage and multiple evaporator Systems – cascade system – COP comparison. Air Refrigeration cycles.

REFRIGERANTS AND SYSTEM COMPONENTS

Compressors – reciprocating and rotary (elementary treatment), Types of condensers, vaporators, cooling towers – Functional aspects. Refrigerants – properties – selection of refrigerants, Alternate Refrigerants, Cycling controls.

PSYCHROMETRY

Psychrometric processes use of psychrometric charts – Grand and Room Sensible Heat Factors – bypass factor – air washers, requirements of comfort air conditioning, summer and Winter Air conditioning.

AIR CONDITIONING SYSTEMS

Cooling load calculation working principles of – Centralized Air conditioning systems, Split, Ductable split, Packaged Air conditioning, VAV & VRV Systems. Duct Design by equal friction method, Indoor Air quality concepts.

UNCONVENTIONAL REFRIGERATION CYCLES

Vapor Absorption system – Ejector jet, Steam jet refrigeration, thermo electric refrigeration. APPLICATIONS – ice plant – food storage plants – milk – chilling plants.

Text Books

- 1 Manohar Prasad, "Refrigeration and Air Conditioning", Wiley Eastern Ltd., 1983.
- 2 Arora C.P., "Refrigeration and Air Conditioning", Tata McGraw Hill, New Delhi, 1988.

Reference Books

1	Roy. J. Dossat, "Principles of Refrigeration", Pearson Education 1997.								
2	Jordon and Priester, "Refrigeration and Air Conditioning", Prentice Hall of India Pvt.Ltd., New Delhi, 1985.								
3	Stoecker N.F. and Jones, "Refrigeration and Air Conditioning", TMH, New Delhi, 1981.								
Cour	se Designers								
S.No	Faculty Name	Designation	Department/Name of the College	Email id					
1	Dr.M.Prabhahar	Assoc Prof	Mech / AVIT	mprabhahar@avit.ac.in					
2									

171/1	ESE29		TUI	RBOM	IACH	INER	Y	Ca	ategor	y	L	Т	Р	Cre	edit
1/1011	261227							E	C(SE)		3	0	0	í	3
Preami This co		o expl	ore the	e strate	egies i	n Mac	hineri	es and	its dyı	namic	analysis	3			
Prereque Engine		herm	odvna	mics.	Fluid	Mech	anics	and N	Iachin	erv					
Course	0									5					
1 T	o learn	the pr	inciple	es of fl	uid m	achine	ry.								
2 T	o understand various fans and blowers.														
3 T	o understand the concept of compressors.														
4 T	o learn the concept of axial flow compressors.														
5 T	o understand the concept of various turbines.														
Course	Outcor	nes: (On the	succe	essful	compl	etion	of the	cours	e, stud	ents wi	ill be abl	e to		
CO1.	e Outcomes: On the successful completion of the course, students will be able to Know about the fundamental of fluid mechanics concepts, and energy transfer from fluid and machineries														
CO2.							nd imp	ortan	ce of d	ynamio	c machi	neries	Under	stand	
CO3.	To un analys				nstruct	ional c	letails	of cor	npress	ors and	l perfor	mance	Under	stand	
CO4.	-	ow ał	out be	ench n						iagran	ns for w	ork	Apply		
CO5.		ow ał	oout be	ench n	narkin					iagran	ns for bl	lade	Apply		
Mappir	ng with	Prog	ramm	e Out	comes	and F	Progra	amme	Specif	ic Out	comes				
CO	PO1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO12	PSO 1	PSO 2	PSO 3
CO1	М								М				М		
CO2	М			L					М				L		
CO3	М				L			L	М				L		
CO4	M M L S M M M														
CO5	M M M M														
S- Stro	ng; M-N	Aediu	m; L-	Low	1	1		1	<u>ı </u>		1	I	1	1	1

BASIC PRINCIPLES

Energy transfer between fluid and rotor-classification of fluid machinery,-dimensionless Parameters-specific speed-applications-stage velocity triangles-work and efficiency

CENTRIFUGAL FANS AND BLOWERS

Types- stage and design parameters-flow analysis in impeller blades-volute and Diffusers, losses, characteristic curves and selection, fan drives and fan noise.

CENTRIFUGAL COMPRESSOR

Construction details, impeller flow losses, slip factor, diffuser analysis, losses and Performance curves

AXIAL FLOW COMPRESSOR

Stage velocity diagrams, enthalpy-entropy diagrams, stage losses and efficiency, work Done simple stage design problems and performance characteristics.

AXIAL AND RADIAL FLOW TURBINES

Stage velocity diagrams, reaction stages, losses and coefficients, blade design Principles, testing and performance characteristics

Text Books

1	Yahya, S.M., Turbines, Compressors and Fans, Tata McGraw-Hill Publishing
I	

- Company, 1996.
- 2 Ganesan, V., Gas Turbines, Tata McGraw Hill Pub. Co., 1999.

Reference Books

- **1** Bruneck, Fans, Pergamom Press, 1973.
- 2 Shepherd, D.G., Principles of Turbo machinery, Macmillan, 1969.

S.No	Faculty Name	Designatio n	Department/Name of the College	Email id			
1	Mr.R.Mahesh	Asst.Prof Gr-II	Mech / AVIT	Mahesh@avit.ac.in			

17MESE30			DESIGN OF THERMAL					Ca	ategor	y	L	Т	Р	Cre	edit
			POWER EQUIPMENTS				E	C(SE))	3	0	0	Í	3	
Pream This co	ble ourse pro	ovides	know	ledge (of desi	gn and	d analy	ysis of	the he	at exch	angers				
Prereq NIL	uisite														
Course	e Object	tive													
1 7	To provide the knowledge of heat transfer equipment.														
2 7	To provide knowledge on design and analysis of the Shell and tube heat exchanger														
3 E	Enable to carry out the performance of heat exchanger with the extended surfaces.														
4 ¹	To provide design and analysis of cooling towers.														
Course Outcomes: On the successful completion of the course, students will be able to															
CO1.	Design and analysis of the parallel flow, counter flow heat exchangers. Understand														
CO2.	To understand the multi-pass and cross flow heat exchangers. Understand														
CO3.	To develop the Shell and tube heat exchanger. Apply														
CO4.	To optimize the performance of heat exchanger Understand														
CO5.	To design and analyze the cooling towers Understand														
Mapping with Programme Outcomes and Programme Specific Outcomes															
СО	PO1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO12	PSO 1	PSO 2	PSO 3
CO1	S	L		М			L						L		
CO2	S	М											L		
CO3	S	М					М						L		
CO4	S	М		М			L						L		
CO5 S M		S	М		L						L		S		
S- Strong; M-Medium; L-Low															

CLASSIFICATION OF HEAT EXCHANGERS

Introduction, Recuperation & Regeneration – Tubular heat exchangers: double pipe, shell & tube heat exchanger, Plate heat exchangers.

BASIC DESIGN METHODS OF HEAT EXCHANGER

Introduction, Basic equations in design, Overall heat transfer coefficient – LMTD method for heat exchanger analysis – parallel flow, counter flow, multi-pass, cross flow heat exchanger design calculations.

SHELL & TUBE HEAT EXCHANGERS

Tube layouts for exchangers, baffle Heat exchangers, calculation of shell and tube heat exchangers – shell side film coefficients, Shell side equivalent diameter, the true temperature difference in a 1-2 heat exchanger, shell side pressure drop, tube side pressure drop, Analysis of performance of 1-2 heat exchanger, and design calculation of shell & tube heat exchangers.

CONDENSATION OF SINGLE VAPORS AND EXTENDED SURFACES

Evaporators and Reboilers, Vaporizing processes, forced circulation vaporizing exchangers, natural circulation vaporizing exchangers, calculations of a reboiler.

Longitudinal fins, calculation of a double pipe fin efficiency curve, calculation of a double pipe finned exchanger.

DIRECT CONTACT HEAT EXCHANGER

Cooling towers, relation between wet bulb & dew point temperatures, classification of cooling towers, cooling tower internals, Heat balance, heat transfer by simultaneous diffusion and convection. Analysis of cooling tower requirements. Calculation of cooling tower performance.

1	Process Heat Transfer – D.Q. Kern, TMH.								
2	Heat Exchanger Design – A.P.Fraas and M.N. Ozisick. John Wiely & sons, New York.								
Refe	Reference Books								
1	W.F. Stoecker, Design of Thermal Systems - McGraw-Hill								
2	Bejan, G. Tsatsaronis, M.J. Moran, Thermal Design and Optimization – Wiley								
3	N.V. Suryanarayana, Design & Simulation of Thermal Systems – MGH.								
Course Designers									
S.No	Faculty Name	Designation	Department/Name of the College	Email id					
1	Mr. N. Fedal Castro	Asst Prof - II	Mech / AVIT	fedal@avit.ac.in					

17MESE31	Advanced Ceramic	Category	L	Т	Р	Credit
	Technology	EC(SE)	3	0	0	3

Preamble :

Advanced Ceramic Technology constitute the methods of developing a group of materials other than the clay minerals based "traditional ceramics" particularly for advanced technology applications replacing, in many cases, conventional metals and alloys. Advanced ceramics use mostly synthetic or specially prepared raw materials. Therefore, preparation of synthetic raw material constitutes an important part of this course. Advanced ceramic materials are used in the bulk shapes, form of thick or thin films, single crystals as well as in the fiber form. The materials cover a very wide spectrum of compounds e.g. oxides, carbides, nitrides, oxy-nitrides, silicides as well as their combinations.

Prerequisite: Nil																
	Course Objective															
Cours	e Obj	jectiv	e													
1	To	inculc	ate m	ethods	of pre	parati	on of	ceram	ic mat	erial p	owder	s.				
2	To inculcate methods of preparation of ceramic crystals.															
3	To provide the knowledge of properties of ceramics.															
4	To understand the different applications of ceramics.															
5	То	enable	e stude	ents to	learn	about	variou	ıs type	es adva	unced o	cerami	cs.				
Course	Course Outcomes: On the successful completion of the course, students will be able to															
CO1.	Understand the different methods of development of ceramic Understand materials in different required forms.															
CO2.	Sta for		e meth	nods o	f form	ation	of ce	ramic	in pov	vder a	nd cry	/stal		Und	ersta	าd
CO3.	Und	dersta	and th	e diffe	erent p	orope	rties c	of cera	mics					Und	ersta	nd
CO4.	Ар	ply ce	ramio	s for	differe	ent ap	oplica	tions						A	Apply	
CO5.	Арр	oly ce	ramic	s for a	dvanc	ed ap	plicat	ions						A	Apply	
Mappi	ing w	ith P	rogra	mme (Outco	mes a	nd Pr	ogran	nme Sj	pecific	Outc	omes				
CO		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3
COI	l	Μ	М	S	-	-	-	-	-	-	-	-	-	-	S	-
CO2	2	S	М	М	М	М	-	-	-	-	-	-	-	-	-	-
COS	3	М	S	S	S	-	-	-	-	-	-	-	-	-	-	-
CO4	1	Μ	S	S	S	М	М	S	-	-	-	-	-	-	S	-
COS	5	S	S	S	S	S	S	-	-	-	-	-	-	-	-	М
S- Stro	S- Strong; M-Medium; L-Low															

Syllabus

Introduction to Ceramics

Introduction: oxide and non-oxide ceramics, their chemical formulae, crystal and defect structures, non-stoichiometry and typical properties.

PREPARATION METHODS OF CERAMIC POWDERS

Powder Preparation: Physical methods (different techniques of grinding), chemical routes - coprecipitation, sol-gel, hydrothermal, combustion synthesis, high temperature reaction (solid state reaction).

PREPARATION METHODS OF CERAMIC CRYSTALS

Basic principles and techniques of consolidation and shaping of ceramics: powder pressinguniaxial, biaxial and cold isostatic and hot isostatic, injection moulding, slip casting, tapecasting, calendaring, multilayering. Sintering: different mechanisms and development of microstructure (including microwave sintering). Preparation of single crystal, thick and thin film ceramics. Preparation of single crystal, thick and thin film ceramics.

PROPERTIES OF CERAMICS

Mechanical behavior: fracture mechanics and tribology. Electrical behaviour: insulating (dielectric, ferroelectric, piezoelectric, pyroelectric) semiconducting, conducting, superconducting and ionically conducting, specific materials and their applications. Magnetic behaviour: basic principles, materials and their applications. Transparent ceramics, coatings and films: preparation and applications. Porous ceramics and ceramic membrane: fabrication techniques and applications in separation technology

APPLICATIONS OF CERAMICS

Bio-medical applications of ceramic materials, Ceramics for energy and environment technologies (fuel cell, lithium battery, gas sensor and catalytic support), Ceramics matrix composites: different types, their preparation and properties (including Nano composites) Exotic ceramics: functionally graded, smart/ Intelligent, bio-mimetic.

ADVANCED APPLICATIONS OF CERAMICS

Gas turbine blades - Abrasives – Aerospace - Diesel engines – Heat Exchangers - Cutting Tools Applications. Spinel Ferrites - Hexagonal Ferrites - Garnet - Processing -Single crystal ferrite –Applications. High Temperature Superconductors - Structure of Y-Ba-Cu oxide system - Powder synthesis - Theory of Superconductivity - Nano- ceramics - basic principles, preparation and applications.

Text B	Text Books									
1	Bansal, N.P. ed., 2006. <i>Handbook of ceramic composites</i> (Vol. 200). Springer Science & Business Media.									
2	Fundamental of Ceramics by Michel W. Barsoum, McGraw Hill International edition, 1997									
3	 Modern Ceramic Engineering by David. W. Richerson, Mercel Dekker, NY 1992. 									

4	Ceramic Processing and Sintering by M. N. Rahman, Mercel Dekker, 2003											
Refere	Reference Books											
1	Pugh, R.J. and Bergstrom, L. eds., 1993. <i>Surface and colloid chemistry in advanced ceramics processing</i> (Vol. 51). CRC Press.											
2	Lakshmanan, A. ed., 2012. <i>Sintering of ceramics: new emerging techniques</i> . BoD–Books on Demand.											
Course	ourse Designers											
S.No	Name of the Faculty	Designation	Departme nt/College	Mail ID								
1	C.THANGAVEL,	ASSOCIATE PROFESSOR	Mech/ VMKVEC	ceeteemech@gmail.com								
2	Dr.S.NATARAJAN,	ASSOCIATE PROFESSOR	Mech/ VMKVEC	natarajanshree@gmail.com								
3	N.Lakshminarayanan Associate MECH / nlakshminarayanan@avit.ac.in Professor AVIT											
4												

ELECTIVE COURSES -GENERAL ELECTIVES

17MEEC01	HYDRAULICS AND	Category	L	Т	Р	Credit	
	PNEUMATIC SYSTEMS	EC(PS)	3	0	0	3	

PREAMBLE

Today, Industries are increasingly demanding process automation in all sectors. Automation results into better quality, increased production and reduced costs. The controlling parameters like motion, Speed, Position and torque are paramount in raising productivity and quality and reducing energy and equipment costs in all industries. Electric drives share most of industrial machine control applications. The variable speed drives which controls speed of a.c/d.c motors are indispensable controlling elements in automation systems. Such drives contains various high performance motors, power electronic converters and digital control systems. With wide options which are open to engineers for selecting proper drive system, one can look forward for a highly efficient and reliable drive for every application in industry.

PREREQUISITE-NIL

COURSE OBJECTIVES

1	To understand about basics of fluid power systems fundamentals
2	To acquire knowledge about components used in hydraulic and pneumatic systems
3	To familiarize about the various types of valves and actuators
4	To design hydraulic circuits for different applications
5	To design pneumatic circuits for different applications

COURSE OUTCOMES

On the successful completion of the course, students will be able toCO1. Understand the different drive systems and identify which is suitable for specific
application.UnderstandCO2. Understand the working of different components in fluid power system.UnderstandCO3. Understand about the utilization of cylinders, accumulators, valves and various
control components.UnderstandCO4. Design a feasible hydraulic circuit for a given application.Apply

Apply

CO5. Design a feasible pneumatic circuit for a given application.

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2	PSO 3
CO1	S	М	М	L	М	-							L		
CO2	S	М	М	L	М	-							L		
CO3	S	М	М	L	М	-							L		
CO4	S	S	S	М	L	М							L		
CO5	S	S	S	М	L	М							L		
S- Strong; M-Medium; L-Low															

FLUID POWER SYSTEMS AND FUNDAMENTALS

Introduction to fluid power, Advantages and Applications of fluid power system. Basic Laws in Fluid power system, Types of fluid power systems, Properties of fluids – General types of fluids – Fluid power symbols. Basic Laws in Fluid power system. Low cost automation.

HYDRAULIC SYSTEM & PNEUMATIC SYSTEMS COMPONENTS

Pump classification – Gear pump, Vane Pump, Piston pump, construction and working of pumps– Variable displacement pumps. Pneumatic Components: Compressors-types. Filter, Regulator, Lubricator Unit, Muffler

VALVES AND ACTUATORS

Construction of Control Components: Director control valve – 3/2 way valve, 4/2 way valve, Shuttle valve ,check valve – pressure control valve –pressure reducing valve, sequence valve-Flow control valve.. Fluid Power Actuators: Linear hydraulic actuators – Types of hydraulic cylinders – Single acting, Double acting special cylinders like Telescopic, Cushioning mechanism, Construction of single acting and double acting cylinder.

DESIGN OF HYDRAULIC CIRCUITS

Accumulators and Intensifiers: Types of accumulators – Accumulators circuits, intensifier – Intensifier circuit. Circuits: Reciprocating- Regenerative - Quick return – Sequencing – Synchronizing - Safety circuits - Press – Planer.

DESIGN OF PNEUMATIC CIRCUITS

Fluid Power Circuit Design: Speed control circuits, synchronizing circuit, Sequential circuit design for two and three cylinder using cascade method. Pneumo-hydraulic circuit. Electro pneumatic circuit, Fluid power circuits- failure and troubleshooting.

Text Books:

- 1. Anthony Esposito "Fluid Power with Applications"- Pearson Education 2013
- 2. Srinivasan "Hydraulic and Pneumatic Controls"- TMH 2011.
- 3. Andrew Parr "Hydraulics and Pneumatics "- Jaico Publishing House

Reference:

- 1. Thomson, "Introduction to Fluid power"- Prentice Hall 2004.
- 2. Majumdar S.R. "Oil Hydraulics Principles and maintenance"- Tata McGraw-Hill.
- 3. Majumdar S.R. "Pneumatic systems Principles and maintenance"- Tata McGraw Hill.

S.No	Name of the Faculty	Designation	Department / Name of the College	Mail ID
01.	Dr.S.Natarajan Asso.Prof		MECH/ VMKVEC	natarajanshree@gmail.com

17N	1EEC02		FUN			ALS C		PING	C	Categor	y l	Ĺ	Т	Р		Cree	lit	
									F	EC(PS)	3	0	0		3		
The	mble : students (neering, j	-	-	-			-	-		wledg	e on f	fund	ame	ntals	of	pipi	ng	
Prei	requisite	Nil																
Cou	rse Obje	se Objective																
1	To unde	lerstand the importance of piping engineering																
2	To enab	ole st	udent	to le	arn th	e applic	cation	of flar	nges and	d valv	es							
3	To unde	erstar	nd abc	out p	rocess	mechar	nical e	quipm	ents									
4	To gain	kno	wledg	e abo	out vai	rious pi	pe sup	ports										
5	To enab	ole st	udents	s to l	earn a	bout va	rious t	types c	of stress	analys	sis							
Cou		enable students to learn about various types of stress analysis Dutcomes: On the successful completion of the course, students will be able to																
C01							-		ngineeri					lersta				
		Dis	scuss t	he a	oplicat	tion of t	flange	s and	valves				Und	lersta	and			
CO2	2.						-											
CO3	5.		ply the		ncept o	of vario	us pro	ocess n	nechani	cal			App	oly				
CO4	ŀ.	То	gain k	know	ledge	about v	various	s pipe	supports	5			App	oly				
CO5	j.	Ap	ply the	e con	cept of	f Pressu	ire De	sign o	f Miter	Bende	6		App	oly				
COé)	An	alyse	the d	ifferer	nt types	of stre	ess					Ana	lyze				
Map	oping wit	h Pr	ograr	nme	Outc	omes a	nd Pr	ogran	nme Sp	ecific	Outc	ome	es					
	СО	PO 1	PO2	PO 3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO 11	Р	012	P S O 1	PS O2	PSO3	
	CO1	М	L	-	-	-	-	-	-	-	-	-		-	-			
	CO2	S	М	L	_	-	-	-	-	_	-	-		-	L			
	CO3	S	М	L	-	-	-	-	-	-	-	-		-	M			
	CO4	S	s	М	L	-	-	-	-	_	М	-		-	Μ			
	CO5	S	s	S	М	-	-	-	-	-	М	-		-	L			
CO6		S	s	S	М	S	-	-	-	-	S	-		-	L			

S- Strong; M-Medium; L-Low

Syllabus

INTRODUCTION

Introduction to Piping Responsibilities of Piping Engineer and Designer - Scope of Piping Input and Outputs - General: Process Diagrams (PFD, UFD, P&ID, Line List etc) -Piping Fundamentals Definition, Application Codes and Standards.

FLANGES AND VALVES

Introduction to Flanges and Valves - Application and advantages of Flanges - Pipe Fittings - Pipe Flanges - Valves -Piping Special Items

PROCESS MECHANICAL EQUIPMENTS

Process Mechanical Equipments - Static equipments & Rotary equipments Layouts - Preparation of Plot Plan - Preparation of Equipment Layouts - Preparation of Piping General Arrangement Drawings - Preparation of Cross Sectional Drawings -Piping Isometric Drawings & Material Take off

PIPE SUPPORTS

Pipe Supports: Support Types - Support Selection, Support Location, Support Span Calculation - Typical Unit Conversion - Materials: Preparation of Piping Material Specification - Valve Material Specification - Familiarity with ASME B31.3 Pipe Wall thickness Calculations.

STRESS ANALYSIS

Preparation of Special Items Datasheets : Pressure Design of Miter Bends - Single & Multiple Miters - Pressure Design of Blanks - Branch reinforcement calculations -Overview of Technical Queries and Technical Bid Evaluations

Stress Analysis: Types of stresses, Significance of forces and moments - Introduction to Stress Analysis - Expansion Loop types, BellowsTypes

Text Books									
1	G.K.Sahu, Fundamentals of piping design, New Age International Publishers								
Reference Books									
1	Peter Smith, R.W.Zappe, Valve Selection Hand Book, Elsevier Science								
2	Peter Smith, The fundamentals of piping design, Elsevier Science								
Course Desig	gners								
S.No	Faculty Name Email id								
1	M.SARAVANAN Msaravanan94@gmail.com								
2	J.RABI rabigj@gmail.com								

17N	IEEC03		PE		LEUN ENGIN			TION	-	Categ v	gor	L	Т	Р	Cre	dit
1/10.	IEEC05			L						EC(F	PS)	3	0	0	3	
The	mble : students operation														gineer	ing
Prer	equisite:	Nil														
Cou	rse Obje	ctive														
1	To understand oil well drilling engineering and operations.															
2	To get familiarized with field equipment practices, difficulties and actions to be taken.															
3	To learn fundamental equations and calculations used in drilling engineering.															
4	To gain	know	vledg	ge abo	ut casi	ing an	d cem	entatio	n							
5	To enal	ole stu	ıdent	ts to a	nalysis	s vario	us dril	ling fl	uids							
Cou	rse Outc	omes:	: On	the su	uccess	ful co	mplet	ion of	the co	ourse,	stude	nts wi	ill be	able to)	
CO1	•	Dis	scuss	the b	asic co	oncept	s of w	ell dril	ling ei	nginee	ring			Under	stand	
CO2	•	Dis	scuss	the a	pplicat	tion of	field	equipr	nent p	ractice	es			Under	stand	
CO3	CO3. Apply the concept of fundamental equations and calculations Apply used in drilling engineering.															
CO4	•	То	gain	know	ledge	about	Casin	g and	cemen	tation				Apply		
CO5		Ap	ply t	he cor	ncept o	of usin	g of d	rilling	fluids					Apply		
CO6		Ana	alyse	e the d	lifferei	nt drill	ing flu	uids						Analy	ze	
Map	ping wit	h Pro	grar	nme (Outco	mes a	nd Pro	ogram	me Sp	pecific	Outo	omes				
C	O P								PO			PO	PC		PS	PS
CC		M	02 L	3	4	5	6	7	8	9	10	11	12	01	02	03
					-	-	-	-	-	-	-	-	-	-	-	-
CC)2	S	М	L	-	-	-	-	-	-	-	-	-	L	-	L
CC	03	S	Μ	L	-	-	-	-	-	-	-	-	-	М	-	Μ
CC	04	s	S	М	L	-	-	-	-	-	М	-	-	М	-	Μ
CC	05	S	S	S	М	-	-	-	-	-	М	-	-	L	-	L
CC	06	S	S	S	М	S	-	-	-	-	S	-	-	L	-	L
	I		•	; L-L		1	1	I	1	1	l	1	1		1	1

Syllabus

Drilling Rig

Rotary / top drive drilling for oil and natural gas, introduction to hardware system, power generation system, Hoisting, Rotary and drilling fluid circulation system, Rig selection, onshore offshore rigs, onshore and offshore drilling operations, Horse power calculations for draw-works and rotary advantages and disadvantages of top drive system.

Drilling Operations and Difficulties

Down hole drilling problems and solutions, factors affecting rate of penetration, drill off test, bit section, IADC classification of bit, dull bit gradation, circulation system, mud pumps, numerical related to mud pumps of circulation system, problems concerned with drilling fluid and drill pipe stuck up, geometry of a stuck pipe. Hole problems (lost circulation, kick etc) well control equipment BOP.

Drilling Techniques and Fishing

Introduction to directional, horizontal multilateral drilling techniques. Types of well, coring operations, Fishing tools and operations. Terminology used in directional wells and basic mathematics used in directional wells (DMS to Dec. Deg, co-ordinate system).

Casing and Cementation

Casing and Cementation, Functions, types, API grades properties of casing, Threads and couplings, Functions, classification of cement, Strength retrogenion, Cement additives, Methods of cementation, Equipment accessories, Field problems pertaining to cementation job, Cement slurry calculations.

Drilling Fluids

Drilling fluid, Functions, Types, compositions, Properties of mud, Field test, Rheology, Additives and contamination, Selection of drilling fluids and mud, Conditioning equipments, Mud calculations, Hydrostatic pressure, Volume, Weight related calculations during drilling.

Text B	Text Books										
1	Gatlin C.; Petroleum Engineering, Drilling and Well Completions, Prentice Hall.										
Refere	Reference Books										
1	Rabia H.; Oil Well Drilling Engineering, Graham Trotman Ltd., London.										
2	Azar, J. J., G. Robello Samuel; Drilling Engineering, Penn Well.										
Course	Course Designers										
S.No	No Faculty Name Designatio Department / College Email id										
1	V.K.KRISHNAN	Assistant Professor	Mech / VMKVEC	vkkrishnanme@yahoo.com							

171	/IEEC	04			ULTI NEER	URAL RING	Cat	egory	L		Т	Р	Cre	edit
1/1	ILLU	•••			PME		EC	(PS)	3		0	0	3	3
Th ma	Preamble The course introduces the fundamental knowledge in engineering properties of agricultural materials, different Post Harvest operations and processing methods of harvested crops and storage of crops.													
Prer	quisite													
NIL														
Cou	se Obj	ective)											
1	To und	lerstai	nd the	basic	conce	epts in po	ost harve	esting						
2	To und	lerstai	nd fun	dame	ntals a	and analy	yze vario	ous un	it opera	tions	of A	gricultura	l Proce	ssing
3	To gai harvest			ledge	on dif	fferent Po	ost Harv	vest op	peration	s and	l proc	essing me	thods c	of
4	To gain	n the	knowl	edge	on Ma	terial ha	ndling e	quipn	nent's.					
5	To und	lerstai	nd the	basic	conce	epts in pr	rocessin	g tech	nologie	S				
Cou							-			·		will be a	ble to	
CO1						t harvest cereals a			to eval	uate	the	Apply		
CO2	Und	erstan	d the	drying	g techi	niques ar	nd dryei	S				Underst	and	
CO3		•				epts of cl	Ũ	Ũ	e	-		Apply		
CO4						shelling		-			5	Underst	and	
CO5	11	•	mech pulse			epts of de eds	le huskii	ıg, pol	lishing a	and		Apply		
Мар	ping wi	ith Pr	ograr	nme (Outco	mes and	l Progra	amme	Specif	ic Oı	itcom	ies		
СО	PO1	PO2	PO3	PO4	PO5	PO6 PC	D7 PO8	PO9	PO10	PO11	POI	2 PSO1	PSO2	PSO3
CO1	М	S	Μ	L	Μ							Μ		
CO2	М	М	М	М	Μ							М		
CO3	М	М	М	М	S							S		
CO4	М	M M L S M												
CO5	М	М	М	М	S							М		
S- Str	ong; M-	ng; M-Medium; L-Low												

FUNDAMENTALS OF POST HARVESTING

Post harvest technology - introduction -objectives -post harvest losses of cereals, pulses and oilseeds - importance - optimum stage of harvest. Threshing - traditional methods mechanical threshers - types-principles and operation-moisture content -measurement -direct and indirect methods - moisture meters - equilibrium moisture content.

DRYING

Drying – principles and theory of drying – thin layer and deep bed drying – Hot air drying – methods of producing hot air - Types of grain dryers - selection - construction, operation and maintenance of dryers - Design of dryers

CLEANING AND GRADING

Principles - air screen cleaners - adjustments - cylinder separator - spiral separator magnetic separator - colour sorter - inclined belt separator - length separators - effectiveness of separation and performance index.

SHELLING AND HANDLING

Principles and operation – maize Sheller, husker Sheller for maize – groundnut decorticator – castor Sheller - material handling - belt conveyor - screw conveyor - chain conveyor - bucket elevators - pneumatic conveying.

PADDY AND CROP PROCESSING

Paddy processing - parboiling of paddy - methods - merits and demerits - dehusking of paddy methods – merits and demerits – rice polishers –types – constructional details – polishing –layout of modern rice mill - wheat milling - pulse milling methods - oil seed processing.

Text Books Chakraverty, A. Post harvest technology for Cereals, Pulses and oilseeds. Oxford & IBH 1 publication Pvt Ltd, New Delhi, Third Edition. Sahay, K.M., and Singh, K.K. Unit operations of Agricultural Processing. Vikas 2 publishing house Pvt. Ltd., New Delhi.

Reference Books

1	Pande, P.H. Principles of Agriculture Processing. Kalyani Publishers, Ludhiana.											
2	Henderson, S.M. and R.L. Perry. Agricultural Process Engineering. John Wiley and Sons, New York.											
Cours	e Designers											
S.No	Faculty Name Designation Department/Na me of the College Email id											
1	A.IMTHIYAS AP//MECH MECH/AVIT imthiyas@avit.ac.in											

17MF	MEEC05 BIOMECHANICS								Ca	ategory	V L	ŗ	Т	Р		red t
1/101121	LCUS	DI	UNIT	ЛПА		3			E	C(PS)) 3		0	0		3
Pream The air anatom sport an	n of th ical a	nd m	echar	ical b	ases o	of phy	sical	activi	ty wit	h emp	hasis o					1
Prereg	uisite	- NI	L													
Course	e Obje	ectiv	e													
1	Desc	cribe	force	and T	orque	e, wel	l-defi	ned m	echan	nical a	nd anat	omic	al ter	mir	nolo	gy
2	Und	ersta	nd cei	ntre of	f grav	ity an	d rota	tional	moti	ons						
3	Und	ersta	nd the	e simp	le me	chani	cs									
4							ise an	d effe	ect rela	ations	hip bet	ween	muse	cle f	forc	e
5	and linear and angular motion Understand the bone and elasticity Outcomes: On the successful completion of the course, students will be able															
Course to	e Out	come	es: Or	n the s	succes	ssful o	comp	letion	of th	e cou	rse, stu	dent	s will	be	abl	e
CO1.	-			-	t of fo		on th	ne Bo	dy an	d co	ncept o	of the	e Ui	ıdeı	rstai	nd
CO2.	-			<u> </u>			d rota	tional	conc	epts			Uı	nder	rstai	nd
CO3.	Eval	uate	the si	mple	machi	ines							Ap	pply	/	
CO4.	Expl	lain t	he mu	isical	forces	5							Uı	ndei	rstai	nd
CO5.	Expl	ain a	bout	bones	and i	ts pro	pertie	S					Uı	ıdeı	rstai	nd
Mappi	ng wi	th Pı	rogra	mme	Outc	omes	and l	Progr	amm	e Spe	cific O	utcor	nes			
CO	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO11	PO1 2	PSO 1	Р	2 SO	P S O 3
CO1	Μ	L	L	L	-	-	L	-	-	-	-	-	L		-	-
CO2	М	L	L	L	-	-	L	-	-	-	-	-	L		-	-
CO3	S	Μ	М	М	-	-	L	-	-	-	-	-	L		-	-
CO4	S	S	Μ	Μ	-	-	L	-	-	-	-	-	L		-	-
CO5	S	S	М	М	-	-	L	-	-	-	-	-	L		-	-
S- Stron	g; M- I	Mediu	ım; L-	Low												

	bus
Force	es and Torques
Force Comp Newt Force Conce Nonp	ept of Force - Representation of Forces, Diagram of Forces, Resultant or Sum of Vectors, Addition of Vectors - Rule of Polygon, Rule of Parallelogram, Method of bonents, Algebraic Method. Newton's Laws - Newton's First Law of Motion, on's Second Law, Newton's Third Law. Some Specific Forces – Weight, Muscle es, Contact Force or of Reaction or Normal Force, Forces of Friction – Pressure. ept of Torque-Torque Due to Two or More Nonparallel Forces, Resultant of Two arallel Forces Appliedon a Body and Its Line of Action, Rotational Equilibrium.
	er of Gravity and Rotation ht and Center of Gravity, Practical Method to Locate the Center of Gravity,
Analy Equil Regul	rtical Method to Locate the Center of Gravity, Stable, Unstable, and Neutral ibrium, Motion of the Center of Gravity, Moment of Inertia- Moment of Inertia of larly Shaped Uniform Solids, Radius of Gyration, Parallel Axis Theorem, Moment ertia of the Human Body, Angular Momentum and Its Conservation-Angular lse, Variation of Angular Momentum.
Simp	le Machines
Lever Locor Lever	le Machines, Work Done by a Force, Levers- First Class Levers, Second Class rs, Third Class Levers, Mechanical Advantage. Levers in the Human Body- The motion Equipment, Articulations and Joints, Muscle and Levers, Identification of rs in the Human Body, Pulleys-Combination of Pulleys, Traction Systems. Reference
Nonp the Sp	ibrium Conditions of a Rigid Body, System of Parallel Forces, System of arallel Forces, Forces on the Hip, Forces on the Spinal Column-Forces Involved in pinal Column When the Posture Is Incorrect, Forces Involved in the Spinal Column the Posture Is Correct.
Nonp the Sp	ibrium Conditions of a Rigid Body, System of Parallel Forces, System of arallel Forces, Forces on the Hip, Forces on the Spinal Column-Forces Involved in pinal Column When the Posture Is Incorrect, Forces Involved in the Spinal Column the Posture Is Correct.
Nonp the Sp Wher Bone Skele and C Stress Lumb	 ibrium Conditions of a Rigid Body, System of Parallel Forces, System of arallel Forces, Forces on the Hip, Forces on the Spinal Column-Forces Involved in pinal Column When the Posture Is Incorrect, Forces Involved in the Spinal Column a the Posture Is Correct. s ton and Bones, Composition of Bones, Elastic Properties of Solids, Tensile Stress Compressive Stress, Modulus of Elasticity, Elastic Properties of Bones, Pressure or s on Intervertebral Discs, Pressure on the Vertebrae, Shear Stress in the posacral Intervertebral Disc, Bone Fractures in Collisions.
Nonp the Sp Wher Bone Skele and C Stress Lumb	ibrium Conditions of a Rigid Body, System of Parallel Forces, System of arallel Forces, Forces on the Hip, Forces on the Spinal Column-Forces Involved in pinal Column When the Posture Is Incorrect, Forces Involved in the Spinal Column a the Posture Is Correct. s ton and Bones, Composition of Bones, Elastic Properties of Solids, Tensile Stress Compressive Stress, Modulus of Elasticity, Elastic Properties of Bones, Pressure or a on Intervertebral Discs, Pressure on the Vertebrae, Shear Stress in the
Nonp the Sp Wher Bone Skele and C Stress Lumb Text	 ibrium Conditions of a Rigid Body, System of Parallel Forces, System of arallel Forces, Forces on the Hip, Forces on the Spinal Column-Forces Involved in pinal Column When the Posture Is Incorrect, Forces Involved in the Spinal Column the Posture Is Correct. s ton and Bones, Composition of Bones, Elastic Properties of Solids, Tensile Stress Compressive Stress, Modulus of Elasticity, Elastic Properties of Bones, Pressure or s on Intervertebral Discs, Pressure on the Vertebrae, Shear Stress in the posacral Intervertebral Disc, Bone Fractures in Collisions.
Nonp the Sj Wher Bone Skele and C Stress Lumb Text 1	ibrium Conditions of a Rigid Body, System of Parallel Forces, System of arallel Forces, Forces on the Hip, Forces on the Spinal Column-Forces Involved in pinal Column When the Posture Is Incorrect, Forces Involved in the Spinal Column a the Posture Is Correct. s ton and Bones, Composition of Bones, Elastic Properties of Solids, Tensile Stress Compressive Stress, Modulus of Elasticity, Elastic Properties of Bones, Pressure or s on Intervertebral Discs, Pressure on the Vertebrae, Shear Stress in the posacral Intervertebral Disc, Bone Fractures in Collisions. Books Zatsiorsky, Vladimir: Kinematics of Human Motion
Nonp the Sj Wher Bone Skele and C Stress Lumb Text 1 2 3	ibrium Conditions of a Rigid Body, System of Parallel Forces, System of arallel Forces, Forces on the Hip, Forces on the Spinal Column-Forces Involved in the posture Is Correct. s ton and Bones, Composition of Bones, Elastic Properties of Solids, Tensile Stress Compressive Stress, Modulus of Elasticity, Elastic Properties of Bones, Pressure or s on Intervertebral Discs, Pressure on the Vertebrae, Shear Stress in the posacral Intervertebral Disc, Bone Fractures in Collisions. Books Zatsiorsky, Vladimir: Kinematics of Human Motion
Nonp the Sj Wher Bone Skele and C Stress Lumb Text 1 2 3	 ibrium Conditions of a Rigid Body, System of Parallel Forces, System of arallel Forces, Forces on the Hip, Forces on the Spinal Column-Forces Involved in pinal Column When the Posture Is Incorrect, Forces Involved in the Spinal Column the Posture Is Correct. s ton and Bones, Composition of Bones, Elastic Properties of Solids, Tensile Stress Compressive Stress, Modulus of Elasticity, Elastic Properties of Bones, Pressure or a on Intervertebral Disc, Pressure on the Vertebrae, Shear Stress in the posacral Intervertebral Disc, Bone Fractures in Collisions. Books Zatsiorsky, Vladimir: Kinematics of Human Motion Robertson, D. Gordon E.: Research Methods in Biomechanics

Cours	e Designers			
S.No	Faculty Name	Designation	Dept / College	Email id
1	Dr. S. Natarajan	Asso. Professor	MECH/ VMKVEC	natarajanshree@gmail.com
2	Prof. N. Rajan	Professor	MECH/ VMKVEC	rajanned@gmail.com

171/1	TECO	c	МТ			EMG			С	ategor	y	L	Т	Р	С
1/1/11	EEC0)	IVII	EMS A		EINI S			E	C(PS)		3	0	0	3
PREA	MBLE												ľ	•	1
The c	course	revie	ws the	e vario	us appl	lication	ns of l	MEM	S AN	D NEN	AS and	l its app	plicatio	ons in	
senso	ors and	actua	ators.												
PRER	EQUIS	ITE : N	IL												
COUF	RSE OE	JECTI	/ES												
1 Т	'o stu	ly the	funda	amenta	ls of M	IEMS	and N	EMS							
2 T	'o gai	n knov	wledg	e on fa	bricatio	on of N	MEMS	5							
3 Т	o stu	ly on	Micro	Senso	ors										
4 T	o stu	ly on	Micro	o actuat	tors										
5 T	'o stu	ly on	Nano	system	ns and	Quanti	ım M	echan	ics						
COUF	RSE OL	ITCON	1ES												
On th	e succ	essful	comp	letion o	of the co	ourse,	studer	nts wil	be ab	le to					
he st	udent	will u	nderst	and the	e variou	s appli	cation	s of NI	EMS ai	nd MEN	٨S			Jnderst	and
CO2.	The st	udent	will ur	ndersta	nd the \	Various	s fabrio	cation	of ME	MS			1	Jnderst	and
CO3.	The st	udent	will le	arn the	workin	g of va	rious r	nicros	sensor	S				Analyze	
CO4.	The st	udent	will kr	now how	w to de	sign th	e work	king of	micro	actuat	ors			Apply	
CO5.	The s	tudent	will u	ndersta	nd the	nanosy	/stems	s and c	luantu	ım mec	hanics		1	Jnderst	and
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	-	-	-	-								М		
CO2	S	-	-	-	-								М		
CO3	S	S	S	L	L								S		
CO4	S	S	S	L	L								М		
CO5	S	м	М	м	S								Μ		
S- Str	ong M	-Medi	um L	- Low			•				•			•	
SYLLA	BUS														
OVE	RVII	EWA	ND II	NTRO	DUCT	ION									
New	trend	s in Ei	nginee	ering a	nd Scie	ence: N	Aicro	and N	anos		stoms	Introdu	ation	to Desi	on of
			\mathcal{C}	0				und i	ano s	cale sy	stems	muou	iction	to Desi	5 ^{II} OI

Micro and Nano electro mechanical systems, Micro electromechanical systems, devices and structures Definitions, Materials for MEMS: Silicon, silicon compounds, polymers, metals

MEMS FABRICATION TECHNOLOGIES

Microsystem fabrication processes: Photolithography, Ion Implantation, Diffusion,

Oxidation. Thin film depositions: LPCVD, Sputtering, Evaporation, Electroplating; Etching

techniques: Dry and wet etching, electrochemical etching; Micromachining: Bulk

Micromachining, Surface Micromachining, High Aspect-Ratio (LIGA and LIGA-like)

Technology; Packaging: Microsystems packaging, Essential packaging technologies, Selection of packaging materials

MICRO SENSORS

MEMS Sensors: Design of Acoustic wave sensors, resonant sensor, Vibratory gyroscope,

Capacitive and Piezo Resistive Pressure sensors- engineering mechanics behind these

Microsensors. Case study: Piezo-resistive pressure sensor

MICRO ACTUATORS

Design of Actuators: Actuation using thermal forces, Actuation using shape memory Alloys,

Actuation using piezoelectric crystals, Actuation using Electrostatic forces (Parallel plate,

Torsion bar, Comb drive actuators), Micromechanical Motors and pumps. Case study: Comb drive actuators

NANOSYSTEMS AND QUANTUM MECHANICS

Atomic Structures and Quantum Mechanics, Molecular and Nanostructure Dynamics:

Shrodinger Equation and Wave function Theory, Density Functional Theory, Nanostructures

and Molecular Dynamics, Electromagnetic Fields and their quantization, Molecular Wires and Molecular Circuits.

Text Books:

1. Marc Madou, "Fundamentals of Micro fabrication", CRC press.

2. Stephen D. Senturia," Micro system Design", Kluwer Academic Publishers.

Reference:

1. . Tai Ran Hsu ,"MEMS and Microsystems Design and Manufacture" ,Tata McGraw Hill.

2. Chang Liu, "Foundations of MEMS", Pearson education India limited.

Cour	rse Designers			
S. No.	Name of the Faculty	Designation	Department / Name of the College	Mail ID
1	Dr.D.Bubesh Kumar	Associate Professor	Mechanical/ AVIT	bubeshkuma@avit.ac.in

17MI	EEC0'	7	NA	VAL	ARG	CHI	ГЕС	ΓUR	E	Cate	gory	L	Т	Р	Cr	edit
				,						EC(PS)	3	0	0		3
Pream	ble															
	-			adeq	uate l	know	ledge	basic	e kno	wledg	e on N	Javal	Arch	itect	ure	
Prereq	luisite	- NIL	,													
Course	e Obje	ective														
1	To ui	nderst	tand l	nistor	ical d	levelo	opmer	nt of o	differ	ent ty	pes of	nava	vess	els		
2	To ga	ain th	e bas	ic kno	owled	lge al	oout d	lesigr	n of H	Iull.						
3 7	Го en	hance	e the]	know	ledge	e of r	nain a	and a	ıxilia	ry ma	chiner	y in v	varsh	ips		
4]	Го un	derst	and t	he St	ructu	ral ar	range	ment	s in r	naval s	hips					
5]	Го en	hance	e the	varic	ous ty	pes o	of son	ne mo	odern	naval	ships					
Course	e Outo	comes	: On t	he suc	cessfu	ıl com	pletio	n of tl	ne cou	ırse, stı	idents	will be	e able	to		
CO1.	cons		. Dete	-						sion re e alloca	-			Unde	erstand	
CO2.					dge of onstru		odynai	mics o	f nava	ıl vesse	ls. Prop	pellers	for	Appl	у	
CO3.	meth	ods to	reduc	e its e	ffects,	Guns		loes, d	epth c	cedures hargers				Unde	erstand	l
CO4.	meth	ods to	reduc	e its e	ffects,	Guns		loes, d	epth c	cedures hargers				Ana	lyze	
CO5.	A/C	and v		tion s					<u> </u>	and su udder a	<u> </u>			Anal	yze	
Mappi	ng wi	th Pro	gram	me O	utcom	es and	l Prog	ramn	ne Spe	cific O	utcom	es	I			
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PS	01	PSO2	PSO3
CO1	S	L	-	-									N	1		
CO2	М	S	М	L									N	1		
CO3	S	М	L	М									S	5		
CO4	S	S	L	S									N	1		
CO5	L	S	М	S									N	1		
S- Stro	ng; M·	Mediu	ım; L-	Low	1	1	1			1	I	1		1		1

Historical development of different types of naval vessels:

Distinguishing features of warship types. Indigenous design and production of naval vessels. Mission requirements and constraints. Concept exploration and development of warship criteria. Determination of mine dimensions. Volumes based and weight based criteria. Space allocation and general arrangement.

Design of Hull Form

Warship resistance data, Hydrodynamics of naval vessels. Propellers for warships. Design and construction. Propeller data for heavily loaded propellers. Hydrodynamic design methods. Stability criteria for warships. Damage survival considerations.

Main and auxiliary machinery in warships

Comparative methods of steam, diesel and gas turbine plants. Combined plants. Requirements of sea keeping and stability platform. Stabilisation systems. Special manoeuvring requirements for naval vessels.

Structural arrangements in naval ships

Structural design criteria and design procedures. Shock and methods to reduce its effects. Accommodation. Habitability standards. A/C requirements. Nuclear, bacteriological and chemical defense arrangements. Weapon systems. Guns torpedoes, depth chargers, mines and missiles. Radar and Sonar weapon control systems. Counter Measures.

Detailed study of some modern naval ships

Submarine: General description, pressure hull external structure, diving and surfacing systems. A/C and ventilation systems. Stability, equilibrium polygon. Distance when submerged and while on surface. Propulsion system. Rudder and hydroplanes. Nuclear submarines.

Refere	ence Books										
1	Strength of Ship Structures by W. Muckle										
2	Ship Construct	ion by D.J. Eyer	S								
3	Principles of N	aval Architectur	e by Ed.V. Le	ewis							
4	Ship Design ar	d Construction	by R.Taggart								
Cours	e Designers										
S.No	Faculty Name	Designation	Department/ Name of the College	Email id							
1	S. ARUNKUMAR Associate Professor Mech / VMKVEC sarunkumar@vmkvec.edu.in										
2											

17M	EEC0	8	SH	IIP R	TIT T	DING		Cate	gory	L		т	Ρ	Cre	edit
1/101	LLCU	0	51		JUILI	JIIIG		EC(PS)	3		0	0	;	3
	udents s in s	hips ,	-			-		-		-			tals of Sl e-end a	-	
Prere	quisite	9													
NIL															
Cours	e Obj	ective	9												
1	Гo und	erstand	d vario	ous ter	ms use	d in sh	ip c	onstru	iction	and ma	aterial	s use			
2	Го und	erstand	d side i	framin	ıg, shell	l, decks	, bu	ılk he	ads a	ind dee	p tan	ks			
3	Го gair	n know	ledge	about	fore en	nd arran	nger	nent ,	suppo	orting	of ruc	lder, b	earing.		
	U			with fi	ield of s	shipyar	d pr	actice	, con	structio	onal d	etails			
4 8	and rec	quiren	nents.												
5	Го gair	n know	ledge	about	offshor	e techno	olog	y							
Cours	e Out	come	es: On	the s	succes	ssful co	omj	pletio	n of t	he cou	urse, s	stude	nts will	be able	e to
CO1.	Disc	uss the	e basic	conce	pts of s	ship coi	nstr	uction	and r	nateria	ls use		Unders	tand	
CO2.		uss the tank		vledge	of side	e framin	ng, s	hell, d	ecks ,	bulk 1	heads	and	Apply		
	-			ot of f	ore end	d arrang	gem	ent, s	suppo	rting o	of ruc	lder,	Apply		
CO3.	bear	ing													
004		-		•		eld shi	руа	rd pra	actice	, cons	structi	onal	Apply		
CO4.	deta	ils and	ł requ	ireme	nts.										
CO5.				pt of c	lrilling	ships	and	l platfo	orms	,specia	l auxi	liary	Apply		
005.	serv	ice sh	ips.												
CO6.	To g	ain kn	owledg	ge abo	ut ship	surve	ys						Apply		
Марр	ing wi	th Pro	ogran	nme C	Outcon	nes an	nd P	rogra	mme	Speci	fic Ou	Itcom	es	_	
CO	PO1	PO2	PO3	PO4	PO5	PO6 P	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	Μ	L													
CO2	S	М	L										L		L
002												1	м	i i	
CO3	S	М	L										М		М

CO5	S	S	М	L					М	М
C06	S	М	L						М	М

S- Strong; M-Medium; L-Low

SHIP TERMS

Various terms used in ship construction with reference to ship's parameter e.g. L.B.P. -Moulded Depth - Moulded draught etc. - General classification of ships.

Stresses in Ship's structure: Hogging – Sagging – Racking – Pounding – Panting etc., and Strength members to counteract the same.

Sections and materials use: Type of sections like angles – Bulb plates flanged beams used in ship construction – Riveting & Welding testing of welds – Fabricated components.

BOTTOM & SIDE FRAMING

Double bottoms, watertight floors solid and bracket floors – Longitudinal framing keels – side framing like tank side brackets – Beam knee – Web frame etc., Shell & Decks: Plating systems for shells – Deck plating & Deck Girders – discontinuities like hatches and other openings – supporting & closing arrangements – mid-ship section of ships. Bulk heads & Deep Tanks: water tight bulkheads – Arrangement of platings and stiffeners – water tight sliding doors – Water tight openings through bulkheads for electric cables pipes and shafting – Deep tank for oil fuel or oil cargo corrugated bulk heads.

FORE & AFT END ARRANGEMENTS

Fore end arrangement, arrangements to resist pounding bulbous bow – Types of sterns stern frame and rudder – Types of rudder – Supporting of rudder – Locking pintle – Bearing pintle – Pallister bearing shaft tunnel – Tunnel bearings.

FREE BOARD AND TONNAGE

Significance and details of markings various international Regulations. Shipyard Practice: layout of a shipyard – Mould loft –Optical marking – Automatic plate cutting, Fabrication and assembly etc.,

Ship Types: Tankers – Bulk Carriers – Container ships – L.N.G., L.P.G., and Chemical carriers – Lash ships – Passenger ships – Dredgers – Tugs etc., - Constructional details and requirements.

OFFSHORE TECHNOLOGY

Drilling ships and Platforms – Supply vessels – fire fighting arrangement – Pipe laying ships – special auxiliary service ships.

Ship Surveys: Survey rules – Functions of ship classification – Societies – Surveys during construction – Periodical surveys for retention of class.

Text Books

1	D.J. Eyres, "Ship Construction", 4 th Edition, Butter worth – Heinemann, Oxford, 1994.
2	E.A. Stokoe, "Reed's Ship Construction for Marine Engineers", 1 st Edition, Thomas Reed Publication, London, 2000.
Refer	ence Books
	A I Young "Ship Construction sketch & Notes" 1 st Edition Butter worth –

	A.J. Young, "Ship Construction sketch & Notes", 1 st Edition, Butter worth –	
1	Heinemann, London, 1980.	

2	H.J. Pursey, "Merchant Ship Construction", 7 th Edition, Brown Son & Ferguson Ltd.
2	GlasGow Great Britain, 1994.

Cours	e Designers			
S.No	Faculty Name	Designation	Department/Nam e of the College	Email id
1	R.ANANDAN	ASSO.PROF	MECH/VMKV	rajanand0072000@yahoo.com

17M	17MEEC09			UXIL	IARY			Ca	tegor	y 1	L T	Р		Crec	lit	
17141	EECO	MAC	HINE	RY				E	C(PS) (3 0	0		3	i	
arrang used in auxilia	able ourse at ements, n marine ry mach quisite	the values, stee	arious ering s	valvo systen	es, co ns of 1	cks, p narine	oumps es. Th	, heat	exc	hange	ers, eva	aporate	ors ar	nd dis	tillers	
	e Objec	tive														
1 7	Fo study	about	the ba	asic er	ngine r	room l	ayout	s, pipi	ng sy	stem	s and fi	tting u	sed in	n ship	s.	
2 7	Fo learn	the dif	ferent	valve	es and	cock	syster	ns us	ed in	ships						
3 7	Fo under	stand	the op	eratio	ns and	l utili	zation	of dif	ferer	nt pun	nps use	ed in sl	hips.			
4 7	Го study	and a	nalyze	vario	us hea	at excl	nanger	s, eva	pora	tors a	nd disti	llers u	sed ir	n ship	s.	
5 7	Fo under	stand	variou	is type	es of st	teering	g syste	ems us	ed ir	n ship	5.					
Cours	e Outco	mes: (On th	e succ	essful	com	pletio	n of th	e co	urse,	studen	ts will	be a	ble to)	
CO1.		rstand g used			gine r	oom l	ayouts	s, pipi	ng sy	stems	and	Un	dersta	and		
CO2.	fitting used in ships.UnderstandDifferentiate types of valves and cock systems of ships.Understand															
CO3.	Unde	rstand	differ	ent ty	pes of	pump	s is sh	ips.				Un	dersta	and		
CO4.	distill	ers and	d anal	yze th	eir pei	rforma	ances	•	-		rs and	Ap	ply			
CO5.	Unde	rstand	differ	ent ty	pes of	steeri	ng sys	tems	ised	in shi	ps.	Un	dersta	and		
Mapp	ing with	n Prog	ramn	ne Out	tcome	s and	Prog	ramm	e Sp	ecific	Outco	mes				
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO 9	PO1 0	PO11	PO12	PSO 1	PSO 2	PSO	
CO1	М	L	L	L	L	-	-	-	-	-	-	-	M	-	М	
CO2	М	L	L	L	L	-	-	-	-	-	-	-	М	-	М	
CO3	S	S	S	S	S	-	-	-	-	-	-	-	S	-	S	
CO4	S	М	М	М	М	-	-	-	-	-	-	-	М	-	М	
CO5	М	М	М	М	М	-	-	-	-	-	-	-	М	-	S	
S- Stro	ng; M-M	edium;	L-Low	,	1		1				1	•		1		
Syllab	us															
ENGI	NE ROO	OM LA	ΥΟυτ	-												

Layout of main and auxiliary machinery in Engine Rooms in different ships. Engine Room Piping Arrangements & Fittings: Steam and condensate system, water hammering in pipes, Expansion joints in pipelines, Bilge – ballast, fuel oil bunkering and transfer system, bunkering procedure, precautions taken, fuel oil service system to main and auxiliary engines, lubricating oil and Engine cooling system to main and auxiliary engines, central cooling and central priming systems, control and service air system, domestic fresh water and sea water (Hydrophore) service system, drinking water system, fire main system.

VALVES AND COCKS

Straight way cocks, right angled cock, 'T' cock, spherical cock, Boiler gauge glass cock (cylindrical cock).

Valves: Globe valves, SDNR valve, swing check valve (storm valve), gate valves, butterfly valves, relief valves, quick closing valves, pressure reducing valves, control valves, change over valve chests, fuel oil transfer chest, valve actuators, steam traps. Jointings: Packings, Insulation of materials, Types,- Various applications. Seals – purpose of bearing seal, description and application of non rubbing seals and rubbing seals, simple felt seal, seals suitable for various peripheral speeds, V-ring seals, Lip seals.

Filters and strainers: Filtration, filter elements basket strainers, duplex strainers, edge type strainers, auto-kleen strainers, back flushing strainers, magnetic filter, rotary filters, fine filters.

PUMPS

Types of pumps for various requirements – their characteristics, performance and application in ships – centrifugal pumps – gear pumps – screw pumps and reciprocating pumps – care and maintenance of pumps.

HEAT EXCHANGERS, EVAPORATORS AND DISTILLERS

Principle of surface heat transfer – description, contact heat transfer, construction of shell and tube type – flat plate type, single and double pass – lubricating oil coolers, fueloil heaters, fresh water coolers, compressed air coolers, Main Engine charge air cooler, Fresh water heaters, steam condensers, evaporators and condensers in refrigeration system – materials used in all the above heat exchangers, expansion allowance – temperature controls effect of air in the system – maintenance.

Evaporators and Distillers: Distillation of water, distilling equipment, problem of scale formation and method of controlling, methods of distillation, single effect and double effect shell type evaporator, low pressure vacuum type evaporator, flash evaporators, salt water leaks and detection, reverse osmosis desalination plant, membranes, drinking water and treatment.

STEERING SYSTEM

Hydraulic Telemotor system (Transmitter and receiver), Bypass valve – charging system, – hydraulic power unit – hunting gear heleshaw pump principle, construction and operation – pawl and ratchet mechanism, 2-ram and 4-ram steering gear – Allelectric steering gear, principle and operation – Hunting gear and emergency steering

gear. Electro-hydraulic steering gear, Raphson and slide Actuators, Rotary vane steering gear – principle – construction – operation – safety features, relief, isolating and bypass valves, steering system regulations and testing – trouble shooting – rectification maintenance. Navigational safety of a ship – case history, cause and /or errors – how to avoid rudder restraining, general requirements – requirements for large tankers and gas carrier, additional requirements (electrical) definitions – controls – automatic system, general arrangement – rudder and pintle, rudder wear down – rudder carrier. **Text Books**

C No	Easulty Name	Designation	Department/	E-molt : J
Course	Designers			
1	Heineman, London, 1	991.		
1	H.D. McGeorge, "Ger	neral Engineering	Knowledge", 3rd editi	on, Butter worth –
Referen	nce Books			
Δ	2001.			
2	H.D. McGeorge, "Mar	rine Auxillary Ma	chinery", 7th Edition,	Butter worth, London,
1	D.W. Smith, "Marine	Auxillary Machir	nery", 6th Edition, But	ter worths, London, 1987.
Text Bo	ooks			

S.No	Faculty Name	Designation	Department/ College	Email id
1	J.SATHEES BABU	Associate Professor	Mech / VMKVEC	jsathees@gmail.com

			MA	ARIN	E			Cate	gory	L		Т	Р	Cre	edit
17N	AEEC1	10	AN	D	GERA' NDITI	TION ONIN	IG	EC	(PS)	3		0	0		3
Prea	mble					01111									
То	develop	the ki	nowled	lge of	studer	nts in N	Aarine	e Refri	geratio	on and A	Air con	ditionin	g		
Prere	equisit	е													
NIL															
Cour	se Obj	ective)												
1	To pro	vide k	nowle	edge o	on per	forma	nce o	of com	presso	ors.					
2	To unc	lerstar	nd the	theore	etical a	spects	of Ma	arine r	efriger	ation a	nd air-c	onditio	ning.		
3	To pro Air cor			0				econo	mical a	and effi	cient d	esign o	f Heat I	Exchang	ers for
4	To unc	lerstar	nd the	vario	us ste	ps inv	olved	l in he	at exc	hanger	desig	n.			
5	To exp	olore tl	he kno	owled	ge on	marin	ne refi	rigera	tion p	lants.					
Cour	se Out	come	s: On	the	succe	essful	com	pletio	n of t	he cou	urse, s	tudent	ts will	be able	e to
CO1.	The	perfor	mance	of Re	ciproc	ating (Compr	ressors	,	_			Unders	tand	
CO2.	The	theore	tical as	spects	of Ma	rine re	friger	ation a	nd air	-conditi	oning		Apply	_	
CO3.		metho onditio						design	of He	eat Excl	hangers	for	Apply		
CO4.	To s		the op					rious	refrige	eration	plants	and	Unders	tand	
Марр	oing wi	ith Pro	ogram	nme (Dutco	mes a	and P	Progra	mme	Speci	fic Ou	tcome	S		
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	L	L	L	М	-	-	-	-	-	-	-	-	-
CO2	М	М	М	L	L	М	-	-	-	-	-	-	-	-	-
CO3	S	М	S	L	М	М	-	-	-	-	-	-	-	-	-
CO4	S	М	L	L	L	М	-	-	-	-	-	-	-	-	-
S- Str	rong; M	-Mediu	um; L-	Low											
RECI	IPROC	ATIN	G CO	MPR	ESSO	RS									
														me flov	
														rs. mult t inter c	
tande	em in li	ne arra	angem	ents ir	n comp	ressor	s. air 1	motors	5.			•	•		C

BASIC REFRIGERATION AND AIR CONDITIONING

Reversed Carnot cycle – vapour compression cycle – refrigerating effect – co-efficient of performance – cooling capacity – refrigerants used in marine practice and their justification - rating of refrigeration plant – methods for improving C.O.P. – use of vapour tables – applied problems.

MARINE REFRIGERATING PLANTS

Typical marine refrigerating plants with multiple compression and evaporator system – heat pump cycles – refrigeration in liquefied gas carriers – applied problems.

MARINE AIR CONDITIONING

Principles of air conditioning – Psychrometric properties of air – comfort conditions – control of humidity – airflow and air conditioning capacity – calculation for ships plants

BASIC DESIGN OF HEAT EXCHANGERS Introduction - types - LMTD and NTU method - double-pipe, shell and tube type, condenser and evaporator - problems. **Text Books** 1 C.P., "Refrigeration & Air Conditioning", 13th Edition, Sri Eswar Enterprises, Chennai, 2016. Stoecker, Wilbert .F Jones, Jerold. W., "Refrigeration and Air Conditioning", 2nd Edition, Tata 2 McGraw-Hill, Delhi, 1985. Stott, "Refrigeration Machinery And Air Conditioning Plant", Marine Engineering Practice, Vol-1 Part-04, IMarEST, London. 3 P 4 Roy, J. Dossat, "Principles Of Refrigeration", 1st Ed., Pearson, 2006. 5 Kuppan Thulukkanam, "Heat Exchanger Design Handbook", 1st Ed., CRC Press, 2000. **Reference Books** D.A. Taylor, "Introduction to Marine Engineering", 2nd Edition, Butter Worth, 1 London,1993. J.R. Stott, "Refrigerating Machinery and Air Conditioning Plant", 1st Edition, The Institute of Marine 2 Engineers, London, 1974, Reprint 1998. Ghoshdastidar, P.S., "Heat transfer", 2nd Edition, Oxford University Press, 2012. 3 Sukhatme, S.P., "Heat Transfer", 4th Ed. Universities Press, 2011. 4 **Course Designers Department/Nam** S.No **Faculty Name** Designation Email id e of the College A.SENTHILKU ASST.PROF senthilkumar@avit.ac.in 1 MECH/AVIT MAR

1714	FEQ	11	T		TDIA		DOTI			Categ	ory	L	Т	Р	Credit	
17M	EEC	11	L	NDUS	IKIA	LKU	BOII	CS		EC(F	PS)	3	0	0	3	
PRE To st applic	udy	the ap	oplicat	ion of	indus	strial r	obots	and e	enhan	ce the	knowl	edge o	f stude	nts in i	ndustrial	
PREI	REQ	UISIT	TE - N	IL												
COU	RSE	OBJI	ECTI	VES												
1	To	learn t	he bas	sics ab	out Ro	botics	and R	Robot d	lrive	system	•					
2	Тот	unders	stand t	he con	trollin	g of R	obots	and de	evices	s syster	n.					
3	The	study	of lat	est tec	hnolog	gy of s	ensors	sused	in roł	ootics.						
4	Тот	unders	stand r	obot k	inema	tics sys	stem.									
5	App	olicati	on of 1	obotic	s in in	dustry										
COU	RSE	OUT	СОМ	ES												
On th	e suc	cessfu	ll com	pletior	of the	e cours	e, stu	dents v	vill b	e able i	to					
CO1.	U	nderst	and th	e basi	cs of R	lobot a	nd its	drive	syste	m.			Un	derstand	ing	
CO2.	Т	Understand the basics of Robot and its drive system.UnderstandingTo Identify the steps involved in controlling systemApply														
CO3.	A	pply t	he var	ious ki	nemat	ics sys	tem u	sed in	robo	ts.			Ap	ply		
CO4 .	Id	entity	the va	arious	sensor	s used	in rot	oots.					Ap	ply		
CO5.	A	ble to	learn	the app	olicatio	ons of	robots	5.					Ap	ply		
MAP OUT			FH PI	ROGR	AMM	E OU	TCO	MES A	AND	PROC	GRAM	ME SP	ECIFI	С		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	М	L														
CO2	М	М	L	S	L	L									L	
CO3	М	S	S	S	М	L							М		L	
CO4	M	M	M	M	S	L							L		L	
CO5 S- Str	s rong;	S M-M	s Iediun	s n; L-L	S /0W	М	L						М		S	
SYLI INTR	RODI	JCTI														
repeat	tabili	ty of	Robot	ics-Sir	nple p	roblen	ns Spo	ecifica	tions	of Ro	bot-Sp	eed of	Robot-I	Robot jo	acy and oints and neumatic	

and Electric system Functions – Need for Robots – Different Applications.

END EFFECTORS AND ROBOT CONTROLS:

Mechanical grippers-Slider crank mechanism, Screw type, Rotary actuators, cam type-Magnetic grippers-Vacuum grippers-Air operated grippers-Gripper force analysis-Gripper design-Simple problems-Robot controls-Point to point control, Continuous path control, Intelligent robot-Control system for robot joint-Control actions, Adaptive control.

ROBOT KINEMATICS:

Forward kinematics – Inverse kinematics – Differences: Forward kinematics and Reverse kinematics of manipulators with two and three degrees of freedom (In 2 dimensional), four degrees of freedom (In 3 dimensional) – Deviations and problems.

ROBOT SENSORS:

Sensor -principles and applications of the following types of sensors – Position of sensors (Piezo electric sensor, LVDT, Resolvers, Optical encoders, Pneumatic position sensors) – Range sensors (Triangulation principle, Structured, Lighting approach, Time of flight range finders, Laser range meters) – Proximity sensors (Inductive, Hall effect, Capacitive, Ultrasonic and Optical proximity sensors) – Touch sensors (Binary sensors, Analog sensors) – Wrist Sensors – Compliance Sensors – Slip Sensors.

INDUSTRIAL APPLICATIONS :

Application of robots in machining - Welding - Assembly - Material handling - Loading and unloading - CIM - Hostile and remote environments.

TEXT BOOKS:

1	K.S. Fu, R.C. Gonzalez, C.S.G. Lee, "Robotics – Control Sensing, Vision and Intelligence", Tata McGraw-Hill Education.
2	Mikell P Groover & Nicholas G Odrey, Mitchel Weiss, Roger N Nagel, Ashish Dutta,
	Industrial Robotics, Technology programming and Applications, McGraw Hill, 2012
REFE	RENCES.

Kozyrey, Yu. "Industrial Robotics" MIR Publishers Moscow. Richard D.Klafter, Thomas A. Chmielewski and Michael Negin, "Robotic Engineering-An Integrated Approach", Prentice Hall Inc, Englewoods Cliffs, NJ, USA

COURSE DESIGNERS

S. No.	Name of the Faculty	Designation	Department / Name of the College	Mail ID
1	G.ANTONY CASMIR	Asst. Prof II	Mechanical, AVIT	antonycasmir@avit.ac.in

17MI	EEC12				IGN (Ca	tegor	y .	L	Т	Р	Cre	edit
1/11			E	XPEI	RIME	ENTS		Е	C(PS))	3	0	0		3
	ourse t nents.T							-				to colle al tools	-		
Prereq Nil	uisite														
Course	e Objeo	ctive													
1 K	Know al	oout I	Desigr	n of E	xperir	nent									
2 L	Indersta	and th	ie met	hodol	ogy f	or Des	sign c	of Exp	erime	nt					
3 F	amiliar	ize ał	oout c	oncep	ts of a	confoi	undin	g and	ANO	VA					
4 E	xpose	the co	ncept	s of re	espon	se sur	face d	lesign							
5 T	'o apply	/ Tag	uchi n	netho	ł										
Course	e Outco	omes:	On t	he su	ccessi	ful co	mple	tion of	f the c	ourse	, stude	ents will	be ab	le to	
CO1.	Unde	rstand	l the p	orincip	oles ai	nd the	ory o	f desi	gning	experi	ments		U	ndersta	nd
CO2.	Apply	y basi	c prin	ciples	in th	e desi	gn of	simpl	e expe	erimen	ts.			Apply	
CO3.	Unde	rstand	and	use th	e tern	ninolo	gy of	exper	riment	al desi	igns		U	ndersta	nd
CO4.	Selec resear			gn an	appı	ropriat	te me	ethod	of da	ta col	lectior	n for a		Analyz	e
CO5.	Apply optim			ept t	oprod	uct d	esign	and	devel	opme	nt for	obtain		Apply	
Mappi	ng witl	h Pro	gram	me O	utcor	nes ai	nd Pr	ograr	nme S	Specifi	c Out	comes			
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	М	S	-	-							-		
CO2	S	М	L	S	-	-							S		
CO3	S	S	S	М	S	-							М		
CO4	М	S	М	М	М	L							М		
CO5	М	М	L	М	L	М							L		
S. Stror	ng; M-M	edium	· L-Le									<u> </u>	<u> </u>	<u> </u>	

BASICS OF DESIGN OF EXPERIMENTS

Introduction in Design of experiments (DOE) - Fundamental and practical issue in industrial experimentation - Statistical thinking and its role within DOE - Basic principles of DOE and Degrees of freedom - Selection of quality characteristics for industrial experiments - Understanding key interaction in processes - Alternative method for calculating two-order interaction effect - Synergistic interaction versus Antagonistic interaction

METHODOLOGY FOR DESIGN OF EXPERIMENTS

DOE methodology - Barriers in the successful application of DOE - Practical methodology of DOE and Analytical tools for DOE - Confidence interval for the mean response - Introduction of Screening design - Geometric and non-geometric P-B design - Introduction of full factorial design - 2^2 , 2^3 , 2^4 full factorial design

CONFOUNDING

Introduction and uses of confounding - 2^3 factorial experiment with complete confounding - 2^3 factorial experiment with partial confounding - Confounding in the 2^n series and examples - Confounding of 3^2 factorial - Confounding of 3^3 factorial and examples - Mixed series and examples - Introduction on ANOVA Analysis

RESPONSE SURFACE DESIGN

Background of response surface design - Creation of response surface design - Central composite design - Box Behnken design - Contour profile of response surface plot - Design table - Analyze the data - Case studies on response surface design - Experiment with random factor

TAGUCHI METHOD

Taguchi design approach - Orthogonal array, S/N ratio - Smaller is better, Nominal is better and larger is better with simple case studies - Analyze the data, factor effect diagram - Levels of parameters - Confirmation test - Augmented design with simple case studies

Text Books

1

K.Vijayakumar

1 Jijuantony, "Design of Experiments for Engineers and Scientists", Elsevier.

Assistant

Professor

2 Douglas C Montgomery, "Design and Analysis of Experiments", John Wiley & Sons Ltd.

Reference Books

1. M N Das, N C Giri, "Design and Analysis of Experiments", New Age International (P) 1 Limited, Publishers, 1997. Larry B. Barrentine, "An introduction to Design of Experiments A simplified approach", New 2 Age International Publishers, 2010. William G. Cochran, Gertrude M. Cox, "Experimental Design", John Wiley and sons, Inc. 3 Cox C.R, "The theory of Design of Experiments", Chapman and Hall, CRC Press. 4 **Course Designers Department/Name** S.No. **Faculty Name** Designation Email id of the College

Mech / AVIT

vijayakumar@avit.ac.in

171/1	EEC13		INDI	тстр	тат с	SAFE	TV	Ca	ategory	y]	L	Т	Р	Cr	edit
1/1011	LECIS			JSIN		SAFL	11	E	C(PS)		3	0	0		3
Pream To fam	ble iliarize	with s	afety	issues	in de	sign,	handl	ing ar	nd indu	ıstrial	enviro	nment			
Prereq NIL	uisite														
	Object	ive													
1 T	o study	about	safet	y man	agem	ent an	d und	erstar	nd all t	he saf	ety asp	bects the	oroughl	у.	
	o be av							edure	s and	preca	ution	to be f	followe	d durir	ng the
3 T	o be th	oroug	ghly e	quipp	oed w	ith su	afficie			lge of	hand	ling the	e differ	ent typ	pes o
Т	juipmer o be ha									pertise	e for e	mergen	cy situa	ations a	arisin
4 di	le to ac	cident	s and	monit	oring	of he	alth a	spects	5.						
5	o be aw	are of	the v	arious	laws	regar	aing r	ieann	issues	s and s	alety c	or perso	nais.		
Course	Outco	mes: (On th	e suco	cessfu	l com	pletio	on of	the co	urse,	studen	ts will	be able	to	
CO1.						rial ag ations		tions	based	on mi	crostru	cture	Unde	rstand	
CO2.	Selec	t suita	able st	trengt				m and	l its eff	fects f	or a		Unde	rstand	
CO3.	crystalline material.ApplyIdentify heat treatment methods and surface treatments to improve mechanical properties of materials for applications in engineering industries.Apply														
CO4.	To m			•	of the	form	ation	and et	ffects of	of corr	osion	on	Analy	ze	
CO5.	Performer Perfor	rm te ime a	sting a pplica	and m	Selec				valuati rials ai			als for	Analy	/ze	
Mappi	ng with	Prog	ramn	ne Ou	tcom	es and	d Pro	gram	me Sp	ecific	Outco	omes			
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	М	L	L	L	L								М		
CO2	М	L	L	L	L								М		
CO3	S	S	S	S	S								S		
CO4	S	М	М	М	М								М		
	S	S	S	S	S								М		
CO5	5														

UNIT I - SAFETY MANAGEMENT

Evaluation of modern safety concepts - Safety management functions – safety organization, safety department – safety committee, safety audit - performance measurements and motivation - employee participation in safety - safety and productivity.

UNIT II: OPERATIONAL SAFETY

Hot metal Operation - Boiler, pressure vessels - heat treatment shop - gas furnace operation – electroplating-hot bending pipes -Safety in welding and cutting. Cold-metal Operation – Safety in Machine shop - Cold bending and chamfering of pipes - metal cutting –shot blasting, grinding, painting - power press and other machines

UNIT III: SAFETY MEASURES

Layout design and material handling - Use of electricity - Management of toxic gases and chemicals - Industrial fires and prevention - Road safety - highway and urban safety – Safety of sewage disposal and cleaning - Control of environmental pollution - Managing emergencies in Industries - planning, security and risk assessments, on- site and off site. Control of major industrial hazards.

UNIT IV: ACCIDENT PREVENTION

Human side of safety - personal protective equipment - Causes and cost of accidents. Accident prevention programs -Specific hazard control strategies - HAZOP - Training and development of employees - First Aid- Fire fighting devices - Accident reporting, Investigation.

UNIT V SAFETY, HEALTH, WELFARE & LAWS

Safety and health standards - Industrial hygiene - occupational diseases prevention – Welfare facilities - History of legislations related to Safety-pressure vessel act-Indian Boiler act - The environmental protection act - Electricity act - Explosive act.

Text Books

1	Krishnan N.V. "Safety Management in Industry" Jaico Publishing House
2	John Ridley

Reference Books

1

Accident Prevention Manual for Industrial Operations", N.S.C.Chicago, 1982

Course Designers

S.No Faculty Name Designation		Designation	Department/Na me of the College	Email id
1	S.DURAITHILAGAR	ASSO.PRO F	MECH/VMKVEC	duraithilagar@vmkvec.edu.in
2	J.RABI	ASSO.PRO F	MECH/VMKVEC	jrabi@vmkvec.edu.in

17MEEC15			CONCURRENT					Cate	gory	L		Т	Р	Cr	edit	
			ENGINEERING				EC(PS)	3		0	0		3		
Preamble																
This course reviews the benefits of Concurrent engineering, life cycle product design, design																
	-			-		, differ				-				-		
						ty duri	ng	produ	ct de	esign,	reliabi	lity,	maintaiı	nability	and	
	nomics		oduct	desig	n.											
Prerequisite NIL																
Cours	se Obj	ective	s													
1	Study	the be	nefits	of co	ncurre	ent engi	neer	ing, li	ife-cy	cle des	ign of	the pr	oducts,	structu	re and	
1	organi	dy the benefits of concurrent engineering, life-cycle design of the products, structure and anization and implementation process of the CE.														
]	Learn	about	the de	esign	of the	product	t as	per th	e cus	tomer	require	ements	and als	o unde	rstand	
2 t	the co-	-opera	tion/	coord	inatio	n requi	red 1	betwe	en th	e diffe	rent de	epartn	nents lik	te marl	keting,	
(design	and th	ne late	est sof	tware	s availa	ble s	so far.								
1	•				0	or manu						•	•	fferent	DFM	
1						nods and										
4				-	tance	of qua	lity	durin	g the	e produ	ict des	sign a	nd met	nods u	sed to	
. 6	evalua			•									_			
5	Learn	about	the de	esign o	of the	product	t for	reliat	oility,	mainta	inabili	ity and	l econor	nics.		
Cours	se Out	comes	s: On	the s	uccess	sful con	nple	tion o	of the	cours	e, stud	ents v	vill be a	ble to		
	Kno	w the	e mea	ning,	objec	ctives a	and	benef	its of	f the c	concur	rent	Understand			
CO1.	engi	neerin	ıg, lif	fe-cyc	le de	esign of	f th	e pro	oducts	s, stru	cture	and				
						tation p										
						of the							Understand			
CO2.						lerstand										
002	-					ent dep			like n	narketi	ng, des	sign				
		nd the latest softwares available so far.														
CO 2		derstand the role of design for manufacturing in concurrent										Understand				
CO3.	-	gineering, different DFM methods, creative design methods and									and					
		computer based approach to DFM.										1	TT 1 / 1			
CO4.		Know the importance of quality during the product design and methods used to evaluate the quality.									and	Understand				
								prod	luot	for	raliabi	litzz	Understand			
CO5.		Understand the design of the product for reliability, maintainability and economics.									iity,	Understand				
Марр						mes an	nd Pi	rogra	mme	Specif	ic Out	tcome	s			
CO	PO1	PO2	PO3	PO4	PO5		PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	S	M	S	L	L				,			1.512	L			
CO2	S	М	S	S	S	М							S			
CO3	S	М	S	L	М	М							М			
CO4	S	М	S	S	М	М							М			
CO5	S	L	S	М	L			_					М			
		S- Strong; M-Medium; L-Low														

INTRODUCTION:

Sequential engineering process, Concurrent engineering definition and requirement, meaning of concurrent objectives of CE, benefits of CE, Life cycle design of products, life cycle costs.

SUPPORT FOR CE: Classes of support for CE activity, CE organizational, structure CE, team composition and duties, Computer based Support, CE Implementation Process.

DESIGN PRODUCT FOR CUSTOMER

Industrial Design, Quality Function Deployment, house of quality, Translation process of quality function deployment (QFD). Modeling of Concurrent engineering design- Compatibility approach, Compatibility index, implementation of the Compatibility model, integrating the compatibility Concerns

DESIGN FOR MANUFACTURE (DFM)

Introduction, role of DFM in CE, DFM methods, e.g. value engineering, DFM guidelines, design for assembly, creative design methods, product family themes, design axioms, Taguchi design methods, Computer based approach to DFM. Evaluation of manufacturability and assembliability.

QUALITY BY DESIGN

Quality engineering & methodology for robust product design, parameter and Tolerance design, Quality loss function and signal to noise ratio for designing the quality, experimental approach.

DESIGN FOR X-ABILITY

B.SELVA BABU

Professor

1

Design for reliability, life cycle serviceability design, design for maintainability, design for economics, decomposition in concurrent design, concurrent design case studies.

Text Books									
1	Concurrent Engineering- Kusiak - John Wiley & Sons								
2	Concurrent Engineering- Menon - Chapman & Hall								
Reference Books									
1	Integrated Product Development/Anderson MM and Hein, L.Berlin, Springer Verlog, 1987.								
2	Design for Concurrent Engineering/ Cleetus, J. Concurrent Engg. Research Centre, Morgantown, WV, 1992.								
Course Designers									
S.No	Faculty Name	Designation	Department/Name of the College	Email id					
	D GEVILL D L DI	Assistant	MECH/AVIT	selvababu@avit.ac.in					

		Category	L	Т	Р	Credit
17MEEC16	FLUID POWER SYSTEMS	EC(PS)	3	0	0	3

Preamble

Fluid Power is the technology that deals with the generation, control, and transmission of power, using pressurized fluids. Fluid power is called hydraulics when the fluid is a liquid and is called pneumatics when the fluid is a gas. Hydraulic systems use liquids such as petroleum oils, synthetic oils, and water. Pneumatic systems use air as the gas medium because air is very abundant and can be readily exhausted into the atmosphere after completing its assigned task.

Prerequisite

NIL

Course Objective

Cour	se Obje														
1	To stu	dy abo	ut the	princi	ples of	f main	hydra	aulic a	ınd pn	eumat	tic con	npone	ents.		
2	To des	ign an	d stud	y abou	it the p	princip	oles of	main	pneun	natic c	compo	nents	•		
3	To leas	rn the	metho	dolog	y of c	ircuit	diagra	ım							
4															
5	5 To study and analyze various circuits application ,maintenance and safety aspects														
Cour	Course Outcomes: On the successful completion of the course, students will be able to														
CO1.	static and dynamic performance characteristics design of component													stand	
CO2.	2. Explain the principles of main pneumatic components. static and dynamic performance characteristics design of component Apply														
CO3.	Students are able to read the circuit diagrams methodology and to understand the principles of circuit operation in relation to the													ly	
CO4.	Expl	ain the	e desig	n of e	lectro-	pneun	natic a	nd hy	draulic	c circu	its.			App	ly
CO5.				e to de lainten	•	•		-		tic cire	cuits aj	pplied	to	App	ly
Map	ping wi	th Pro	gram	me O	utcom	es and	l Prog	gramn	1e Spe	cific (Outcor	mes			
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3
CO1	S	М	М	S	S								М		
CO2	М	M S M M S													
CO3	S	М	М	М	L								М		
1	1	1			1	1	I	I	1				1	1	1

Μ

L

S- Strong; M-Medium; L-Low

M S L

М

S

L

L

М

S

М

CO4

CO5

Syllabus HYDRAULIC COMPONENTS

Introduction to fluid power system-Pascal's Law-Hydraulic fluids-Hydraulic pumps-Gear, Vane and Piston pumps-Pump Performance-Characteristics and Selection-actuators-valves-pressure control-flow control and direction control valves-Hydraulic accessories-Hydraulic Accumulator.

PNEUMATIC COMPONENTS

Introduction to Pneumatics-Compressors-types-Air treatment-FRL unit-Air dryer-Control valves-Logic valves-Time delay valve and quick exhaust valve-Pneumatic Sensors-types-characteristics and applications.

FLUID POWER CIRCUITS

Circuit Design Methodology-Sequencing circuits-Overlapping signals-Cascade method-KV Map method-Industrial Hydraulic circuits-Double pump circuits-Speed control Circuits-Regenerative circuits-Safety circuits-Synchronizing circuits-Accumulator circuits.

ELECTRO - PNUEMATICS AND HYDRAULICS

Relay, Switches-Solenoid-Solenoid operated valves-Timer-Counter-Servo and proportional control-Microcontroller and PLC based control-Design of electro-pneumatic and hydraulic circuits.

APPLICATION, MAINTENANCE AND TROUBLE SHOOTING

Development of hydraulic / pneumatic circuits applied to machine tools-Presses-Material handling systems-Automotive systems-Packaging industries-Manufacturing automation-Maintenance and trouble shooting of Fluid Power circuits-Safety aspects involved.

I CAU D	OORS										
1	Anthony "Esposito, Flui	d Power with appl	lications", Prentice Ha	ll international–1997.							
2	Majumdar.S.R, "Oil Hydraulics", Tata McGraw Hill, 2002.										
3	Majumdar S.R, "Pneumatic systems-principles and maintenance", Tata McGraw Hill 1995.										
Refere	ence Books										
1	John Pippenger, Tyler "I Edition, 1980.	Hicks, Industrial H	Iydraulics", McGraw I	Hill International							
2	Andrew Parr, "Hydraulio	cs and pneumatics	", Jaico Publishing Ho	buse, 2003.							
3	FESTO, "Fundamentals	of Pneumatics", V	Vol I, II, III.								
Course	e Designers										
S.No	Faculty Name Designation Department / College College										
1	S. ASHOK KUAMR	Assistant Professor	Mech / AVIT	ashokkumar@avit.ac.in							

17M	EEC17	E	NGIN	EER	ING I	PRODU	JCT	Ca	tegor	y .	L	Т	Р	Cr	edit
1/111	EEC17			DF	ESIG	N		Ε	C(PS)		3	0	0		3
coope	eering F ration a			-		llenging	g, re	wardi	ng act	ivity t	hat req	uires m	ultifun	ctional	
Prere NIL	quisite														
	se Obje	ctive													
1	To unde	rstanc	the 1	nodel	s in d	evelopii	ng n	ew en	gineer	ring pi	oducts	5.			
	To learn	how	to ide	entify	the cu	istomer	nee	ds and	l integ	rate th	ne end-	consum	er into	process	5.
3	To learn	and	apply	the co	oncept	ts and to	ools	neces	sary fo	or con	cept ge	eneratio	n and e	valuati	on.
4	To apply	y emb	odim	ent de	sign c	concept	in tł	ne pro	cess o	f new	produ	ct devel	opment	-	
5	To Unde	erstan	d the	conce	pt of	manufa	cturi	ing pr	ocess	and de	esign tl	ne produ	ict acco	ordingly	/.
Cours	se Outco	omes	: On t	he su	ccess	ful com	plet	ion o	f the c	ourse	. stude	ents wil	l be ab	le to	
CO1.	Unde	rstanc	the d		otual o	develop	-						•	rstand	
CO2.		y emb	odim	ent pr		es to tra	ansla	ate the	conce	eptual	ideas t	0	Unde	rstand	
CO3.	Apply desig			ental,	ethic	al and so	ocia	l issue	es duri	ng inr	novativ	e	Apply	y	
CO4.	-	-		-		tive eng hilosopl		ering p	oroduc	ts for	industı	rial	Appl	y	
CO5.	Appl	y the	conce	pt of l	Desig	n for Ma	anuf		e and t	to und	erstand	l the	Analy	/ze	
Mapp	ing wit	h Pro	gram	me O	utcor	mes and	l Pr	ograr	nme S	pecifi	c Out	comes	1		
СО	PO1	PO2	PO3	PO4	PO5	PO6 I	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	М	L	L	L	L					_			М		
CO2	М	L	L	L	L								М		
CO3	S	S	S	S	S								S		
CO4	S	М	М	М	М								М		
CO5	S	S	S	S	S					_			М		
S- Stro	ng; M-M	ledium	1; L-Lo)w		1									1

Introduction

Innovations in Design, Engineering Design Process, Prescriptive and integrative models of design, Design Review and societal considerations.

Identification of Customer Need

Evaluating Customer requirements and survey on customer needs, Conversion of customer needs into technical Specifications, Information sources.

Concept Generation and Evaluation

Creativity and Problem solving, Brainstorming, Theory of Inventive Problem solving (TRIZ), Functional Decomposition of the problem for innovative concept development, Morphological design, Introduction to Axiomatic Design, Concept evaluation and decision making.

Embodiment Design

Introduction, Product Architecture, Configuration and Parametric design Concepts, Industrial Design.

Design for Manufacturing

Design for Manufacturing, Design for Assembly, Design for Environment, Design for Reliability and Robustness, Introduction to FMEA.

Text Books

L Nigel Cross, Engineering Design Methods, John Wiley, 2009.

Reference Books

- L George E. Dieter, Engineering Design, McGraw-Hill, 2009.
- 2 Genrich Altshuller, The Innovation Algorithm, Technical Innovation Centre, 20LL.

Course Designers

S.No	Faculty Name	Designation	Department/Name of the College	Email id
1.	PRAVEEN R	Asst. Prof – II	Mechanical / AVIT	praveen@avit.ac.in

17/17/14	EEC18		A	DVAN				Cate	egory	L		Т	Р	Cro	edit
1 / 1VIL				ENO	GINE	S		EC	(PS)	3		0	0	3	3
													peration	,	
	equisite INEER		THE	RMO	DYN	AMI	CS								
Cours	se Obj	ective	;												
1	To stuc	ly the	const	ructio	n and	work	ting of	f Spar	k Igni	ition E	ngines				
2	To stuc	ly abc	out the	e Com	pressi	ion Ig	nition	Engi	nes ar	nd Turt	ocharg	ger			
3	To und	erstar	nd the	differ	ent po	olluta	nts an	d its c	ontro	l techn	iques				
4	To stuc	ly the	diffe	ent A	lterna	tive f	uels a	vailab	ole						
5	To stuc	ly the	vario	us rec	ent tr	ends a	adopte	ed in t	he fie	ld of au	ıtomot	oiles			
Cour	se Out	comes	s: On	the s	ucces	sful c	omple	etion	of the	cours	e, stud	ents	will be a	ble to	
CO1.	Acqu	uire th	ie kno	wledg	ge of e	engine	e oper	ation	and p	erform	ance		Underst		
CO2.	Unc	lersta	nd the	work	ting o	f engi	ne au	xiliary	y syste	ems			Underst		
002	Unc	lersta	nd the	e coml	oustio	n asp	ects o	f SI E	ngine	S			Underst	and	
CO3.			nd the	e coml				f CI E					Apply Apply		
CO3. CO4.					arnot	e fuel	s, eng	ine en	nissio	ns, Me	asuring	g	Арргу		
				ous alt chniqu	ies										
CO4. CO5.		ow the Cont	e vario rol teo							Specif	ic Out	come	S		
CO4. CO5. Mapp	Kno and ping wi	ow the Cont th Pr	e vario rol teo ograr	nme (Outco	omes a	and P	rogra	ımme	-			PSO1	PSO2	PSO3
CO4. CO5. Mapp	Kno and ping wi	ow the Cont th Pr	e vario rol teo ograr	nme (Outco	omes a	and P	rogra	ımme	-				PSO2	PSO3
CO4. CO5. Mapp CO	Kno and Ding wi	bw the Cont th Pr	e vario rol teo ograr PO3	PO4	Outco	omes a	and P	rogra	ımme	-			PSO1 L L	PSO2	PSO3
CO4. CO5. Mapp CO CO1	Knoand oing wi PO1 S	PO2 L	e vario rol teo ogran PO3 L	PO4	Outco	omes a	and P	rogra	ımme	PO10			PSO1 L	PSO2	PSO3
CO4. CO5. Mapp CO CO1 CO2	PO1 S S	PO2 L S	e vario rol tec ograr PO3 L M	PO4	Outco	omes a	and P	rogra	ımme	PO10			PSO1 L L	PSO2	PSO3
CO4. CO5. Mapp CO CO1 CO2 CO3	Knd and PO1 S S S S	PO2 L L L	e vario rol teo ogran PO3 L M M	PO4	Outco	omes a	and P	rogra	ımme	PO10			PSO1 L L L L	PSO2	PSO3

SPARK IGNITION ENGINES

Mixture requirements – Fuel injection systems – Monopoint, Multipoint & Direct injection – Stages of combustion – Normal and Abnormal combustion – Knock – Factors affecting knock – Combustion chambers.

COMPRESSION IGNITION ENGINES

Diesel Fuel Injection Systems – Stages of combustion – Knocking – Factors affecting knock – Direct and Indirect injection systems – Combustion chambers – Fuel Spray behaviour – Spray structure and spray penetration – Air motion – Introduction to Turbocharging.

POLLUTANT FORMATION AND CONTROL

Pollutant – Sources – Formation of Carbon Monoxide, Unburnt hydrocarbon, Oxides of Nitrogen, Smoke and Particulate matter – Methods of controlling Emissions – Catalytic converters, Selective Catalytic Reduction and Particulate Traps – Methods of measurement – Emission norms and Driving cycles.

ALTERNATIVE FUELS

Alcohol, Hydrogen, Compressed Natural Gas, Liquefied Petroleum Gas and Bio Diesel – Properties, Suitability, Merits and Demerits – Engine Modifications.

RECENT TRENDS

Air assisted Combustion, Homogeneous charge compression ignition engines – Variable Geometry turbochargers – Common Rail Direct Injection Systems – Hybrid Electric Vehicles – NOx Adsorbers – Onboard Diagnostics.

1	Ramalingam. K.K., "Internal Combustion Engine Fundamentals", Scitech Publications, 2002.											
2	Ganesan, "Interna	l Combustion E	ngines", II Edition, T	MH, 2002.								
Refere	ence Books											
1	Mathur. R.B. and R.P. Sharma, "Internal Combustion Engines"., Dhanpat Rai & Sons 2007.											
2			ns", The Good Heart ctronics", SAE Publi	Willcox Company, Inc., 1987. 3. cations, 1995								
Cours	e Designers											
S.No	Faculty Name	Designation	Department/Na me of the College	Email id								
1	SANGEETHA.S	ASSOC. PROF	MECH./ AVIT	sangeethas@avit.ac.in								

AERONAUTICAL ENGINEERING -OPEN ELECTIVE

		Category	L	Т	Р	Credit
17AREC03	UNMANNED AIRCRAFT SYSTEMS	EC(OE)	3	0	0	3

Preamble

To enrich the student with additional value based knowledge and skills on sport based Unmanned Aerial Vehicle systems.

Prerequisite

NIL

Course Objectives

1	To know briefly the History of unmanned aerial vehicles and its types.
2	To understand the basic aspects involved in development of UAV.
3	To apply the knowledge in modeling and control of small unmanned vehicles.
4	To modify the existing flight control systems for rotorcraft UAV.
5	To design a new system for efficient operation.

Course Outcomes

In the successful completion of the course, students will be able to

CO1.	Define principles of operation and label components of unmanned aerial	Remember
	vehicles.	
CO2.	Explain working of vehicles used as aerial vehicles.	Understand
CO3.	Employ analytical skills to design a new system.	Apply
CO4.	Categorise the structure and estimate reliability of operations.	Analyze
CO5.	Evaluate and modify the system with up gradation of performance.	Evaluate
CO6.	Formulate and design a new modified vehicle with optimum resources.	Create

Mapping with Programme Outcomes and Programme Specific Outcomes

							- 0								
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	L	L	L	L	-	-	-	-	-	-	-	-	L	L	L
•															
CO2	L	L	L	L	-	-	-	-	-	-	-	-	L	L	L
CO3	S	S	S	S	-	-	-	-	-	-	-	-	Μ	Μ	Μ
CO4	S	S	S	S	-	-	-	-	-	-	-	-	S	S	S
CO5	S	S	S	S	-	-	-	-	-	-	-	-	S	S	S
CO6	S	S	S	S	-	-	-	-	-	-	-	-	S	S	S

S- Strong; M-Medium; L-Low

Syllabus

UNIT – I	UNIT – I INTRODUCTION TO UNMANNED AIRCRAFT SYSTEMS								
History of unma	History of unmanned aerial vehicles- types- Introduction to Unmanned aircraft systems-Unmanned aerial vehicles								
-Micro aerial vehicles definitions, history, classification- applications-recent research and development in civil									
and defense app	lications - autonomous vehicles -future research in autonomous vehicles - design s	standards and							

UNIT – II	ASPECTS OF UNMANNED AIRCRAFT SYSTEMS	9
Involvement of	different aspects in the development of UAV-aerodynamic configurations -Aspect	s of airframe
design- Stealth	design, payload types, communication, navigations & guidance systems, control	l & stability
launch, recover	y and support systems, reliability design.	
UNIT – III	MODELING AND CONTROL HELICOPTER MODEL	9
Modeling and o	control of small and miniature unmanned helicopters -single rotor helicopter design -	coaxial roto
helicopter desig	gn - autonomous control of a mini quad-rotor vehicle using LQG controllers - line	earization and
identification o	f helicopter model.	
UNIT – IV	UNMANNED AERIAL VEHICLE DESIGN MODELING & CONTROL	9
Development c	f autonomous quad tilt wing – advanced flight control systems for rotorcraft UAV	and MAV
mathematical n	nodeling and non-linear control of VTOL aerial vehicles.	
UNIT – V	DEPLOYMENT OF UAS/UAV SYSTEMS	9
Only application	on point of view of various UAS roles played in civil, defense applications -	vision base
navigation coi	npany trails- certification of UAS/UAV/MAV systems.	
TEXT BOOK	Unmanned Aircraft Systems: UAVS Design, Development and Deployment John Wile	
 Reg Austin, KenzoNona Unmanned Sma 3. Laurence R. 	mi, FaridKendoul, Satoshi Suzuki, Wei Wang, Daisuke Nakazawa, Modeling an all Scale Rotorcraft UAVs & MAVs, Springer, New York, 2010 Newcome, Unmanned Aviation: A Brief History of Unmanned Aerial Vehicles, Amer and Astronautics, New York, 2004	
 Reg Austin, KenzoNona Unmanned Sma 3. Laurence R. 	mi, FaridKendoul, Satoshi Suzuki, Wei Wang, Daisuke Nakazawa, Modeling an all Scale Rotorcraft UAVs & MAVs, Springer, New York, 2010 Newcome, Unmanned Aviation: A Brief History of Unmanned Aerial Vehicles, Amer and Astronautics, New York, 2004	

Course Designers:

S.No	Name of the Faculty	Mail ID
1	Senthil kumar M	senthil@vmkvec.edu.in
2	R.Gowri Shankar	gowrishankar@vmkvec.edu.in
3	Sanjay Singh	sanjay@vmkvec.edu.in

17ARSE21	ROCKETS AND MISSILES	Category	L	Т	Р	Credit
		EC(OE)	3	0	0	3

Preamble

This course provides and creates a base for the students to develop concepts of rocket propulsion.

Prerequisite

NIL

Course Objectives

1	To understand the basic concepts of rockets.
2	To provide an in-depth study of propulsion.
3	To develop analytical skills for selection of precise method.
4	To develop criticizing skills for modification and designing components.
5	To develop entrepreneurial skills.

Course Outcomes

In the successful completion of the course, students will be able to

CO1.	Define principles of operation and label components of a rocket.	Remember
CO2.	Explain working of internal combustion engines.	Understand
CO3.	Employ analytical skills.	Apply
CO4.	Categorise the structure and estimate reliability.	Analyze
CO5.	Evaluate and modify the system.	Evaluate
CO6.	Formulate and design a new modified structure.	Create

Mapping with Programme Outcomes and Programme Specific Outcomes

	0		0				0								
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	L	L	L	L	-	-	-	-	-	-	-	-	L	L	L
CO2	L	L	L	L	-	-	-	-	-	-	-	-	L	L	L
CO3	S	S	S	S	-	-	-	-	-	-	-	-	Μ	Μ	Μ
CO4	S	S	S	S	-	-	-	-	-	-	-	-	S	S	S
CO5	S	S	S	S	-	-	-	-	-	-	-	-	S	S	S
CO6	S	S	S	S	-	-	-	-	-	-	-	-	S	S	S
~ ~			-												

S- Strong; M-Medium; L-Low

Syllabus

CLASSIFICATION OF ROCKETS AND MISSILES

Various methods of classification of missiles and rockets – Basic aerodynamic characteristics of surface to surface, surface to air, air to surface and air to air missiles – Examples of various Indian space launch vehicles and missiles – Current status of Indian rocket programme with respect to international scenario

AERODYNAMICS OF ROCKETS AND MISSILES

Airframe components of rockets and missiles – forces acting on a missile while passing through atmosphere – classification of missiles – slender body aerodynamics – method of describing forces and moments – lift force and lateral moment –lateral aerodynamic damping moment – longitudinal moment – drag estimation – upwash and downwash in missile bodies – rocket dispersion.

ROCKET MOTION IN FREE SPACE AND GRAVITATIONAL FIELD

One dimensional and two-dimensional rocket motions in free space and homogeneous gravitational fields – description of vertical, inclined and gravity turn trajectories – determination of range and altitude – simple approximations to determine burn out velocity and altitude – estimation of culmination time and altitude.

STAGING OF ROCKETS AND MISSILES

Design philosophy behind multi staging of launch vehicles and ballistic missiles – optimization of multistage vehicles – stage separation techniques in atmosphere and in space – stage separation dynamics and lateral separation characteristics.

CONTROL OF ROCKETS AND MISSILES

Introduction to aerodynamic and jet control methods – various types of aerodynamic control methods for tactical and short range missiles- aerodynamic characteristics - various types of thrust vector control methods including secondary injection thrust vector control for launch vehicles and ballistic missiles

TEXT BOOK:

TEXT BOOKS:

- 1. Cornelisse, J.W., "Rocket Propulsion and Space Dynamics", J.W. Freeman & Co., Ltd, London, 1982
- 2. Sutton, G.P., "Rocket Propulsion Elements", John Wiley & Sons Inc., New York, 5th Edition, 1993.

REFERENCES:

- 1. Parker, E.R., "Materials for Missiles and Spacecraft", McGraw Hill Book Co. Inc. 1982.
- 2. Mathur, M.L., and Sharma, R.P., "Gas Turbine, Jet and Rocket Propulsion", Standard Publishers and Distributors, Delhi, 1988.

Course Designers:

Course D	jourse Designers.									
S.No	Name of the Faculty	Mail ID								
1	Senthil kumar M	senthil@vmkvec.edu.in								
2	R.Gowri Shankar	gowrishankar@vmkvec.edu.in								
3	Sanjay Singh	sanjay@vmkvec.edu.in								

15 A DOD00	AIRCRAFT MAINTENANCE AND	Category	L	Т	Р	Credit
17ARSE32	REPAIR	EC(OE)	3	0	0	3

Preamble

This subject provides the knowledge and maintenance aspect of airframe systems and rectification of snags. Similarly it gives the in depth knowledge of various technologies behind those systems. It also provides the knowledge of hydraulic and pneumatic system along with aircraft jacking, assembly and rigging **Prerequisite**

NIL

Course Objectives

1.	To understand the basic concepts welding in aircraft structural components
2.	To Study the plastics and composites in aircraft
3.	To Study the aircraft jacking, assembly and rigging
4.	To Study the review of hydraulic and pneumatic system
5.	To Study the safety practices

Course Outcomes

In the successful completion of the course, students will be able to

CO1.	Gather the knowledge of fundamental principles of welding in aircraft	Remember
CO2.	Explain the function and operations of various systems in aircraft	Understand
CO3.	Explain the function and operations of aircraft jacking, assembly and rigging	Understand
CO4.	Utilize the concept and finding out the parameters of hydraulic and pneumatic	Apply
	system	
CO5.	Formulate the performance of safety practices and its instruments.	Analyze

Mapping with Programme Outcomes and Programme Specific Outcomes

	0	1	0 -	1	1	r	-0-			1	1	1	r	1	
COs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3
CO1	L	L	L	-	-	-	-	-	-	-	-	L	L	L	L
CO2	М	L	-	L	М	-	-	-	-	-	-	-	L	М	L
CO3	S	L	М	S	М	-	-	-	L	-	-	L	Μ	Μ	М
CO4	S	М	М	S	М	-	-	-	-	-	-	-	S	S	S
CO5	М	S	S	М	S	-	-	-	-		-	М	S	S	S

S- Strong; M-Medium; L-Low

Syllabus

UNIT – I WELDING IN AIRCRAFT STRUCTURAL COMPONENTS

Equipments used in welding shop and their maintenance – Ensuring quality welds – Welding jigs and fixtures – Soldering and brazing - Sheet Metal Repair And Maintenance - Inspection of damage – Classification – Repair or replacement – Sheet metal inspection – N.D.T. Testing – Riveted repair design, Damage investigation – reverse technology

UNIT – II PLASTICS AND COMPOSITES IN AIRCRAFT

Review of types of plastics used in airplanes – Maintenance and repair of plastic components – Repair of cracks, holes etc., various repair schemes – Scopes. Inspection and Repair of composite components – Special precautions – Autoclaves

10

10

UNIT – III AIRCRAFT JACKING, ASSEMBLY AND RIGGING

Airplane jacking and weighing and C.G. Location. Balancing of control surfaces – Inspection maintenance. Helicopter flight controls. Tracking and balancing of main rotor

8

10

7

UNIT – IV REVIEW OF HYDRAULIC AND PNEUMATIC SYSTEM

Trouble shooting and maintenance practices – Service and inspection. – Inspection and maintenance of landing gear systems. – Inspection and maintenance of air-conditioning and pressurization system, water and waste system. Installation and maintenance of Instruments – handling – Testing – Inspection. Inspection and maintenance of auxiliary systems – Fire protection systems – Ice protection system – Rain removal system – Position and warning system – Auxiliary Power Units (APUs)

UNIT – V SAFETY PRACTICES

Hazardous materials storage and handling, Aircraft furnishing practices – Equipments. Trouble shooting - Theory and practices

TEXT BOOK:

1. KROES, WATKINS, DELP, "Aircraft Maintenance and Repair", McGraw-Hill, New York, 1992

REFERENCES:

LARRY REITHMEIR, "Aircraft Repair Manual", Palamar Books, Marquette, 1992.
 BRIMM D.J. BOGGES H.E., "Aircraft Maintenance", Pitman Publishing corp. New York, 1940

Course Designers:

S.No	Name of the Faculty	Mail ID
1	Senthil kumar M	senthil@vmkvec.edu.in
2	Gowri Shankar R	gowrishankar@vmkvec.edu.in
3	Sanjay Singh	sanjay@vmkvec.edu.in

17ARSE35	ADVANCED MATERIALS AND NDTFOR	Category	L	Т	Р	Credit	
	AEROSPACE APPLICATIONS	EC(OE)	3	0	0	3	

Preamble

This course provides knowledge about advanced materials and creates a base for the students to develop good concepts in metallurgy.

Prerequisite

NIL

Course Objectives

1	To understand the basics of metallurgy.
2	To develop skills for selection of materials.
3	To develop analytical skills for selection of precise method.
4	To develop criticizing skills for modification and designing components.
5	To develop entrepreneurial skills.

Course Outcomes

In the successful completion of the course, students will be able to

CO1.	Understand principles of operation of metallurgical processes involved.	Remember
CO2.	Identify best material for its precise applications.	Understand
CO3.	Employ analytical skills for trouble shooting and further provide solutions.	Apply
CO4.	Categorise the materials depending on reliability.	Analyze
CO5.	Evaluate and modify the parts and components.	Evaluate
CO6.	Formulate and design a new component.	Create

Mapping with Programme Outcomes and Programme Specific Outcomes

COs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03 CO1 L L L L L - - - - - - - L L L L L L L L L . . - - - - - - L L L L .	PP			8				8								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	CO1	L	L	L	L	-	-	-	-	-	-	-	-	L	L	L
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																
. CO4 S S S S - - - - - S S S S 	CO2	L	L	L	L	-	-	-	-	-	-	-	-	L	L	L
. CO4 S S S S - - - - - S S S S 																
CO4 S S S S - - - - - S S S S S	CO3	S	S	S	S	-	-	-	-	-	-	-	-	Μ	Μ	Μ
. . <td>•</td> <td></td>	•															
	CO4	S	S	S	S	-	-	-	-	-	-	-	S	S	S	S
. .	CO5	S	S	S	S	-	-	-	-	-	-	S	-	S	S	S
CO6 S S S - - - - S																
	CO6	S	S	S	S	-	-	-	-	-	-	S	S	S	S	S
	•															

S- Strong; M-Medium; L-Low

UNIT I SUPERALLOYS

Iron base, Nickel base and Cobalt base super alloys, composition control, solid solution strengthening, precipitation hardening by gamma prime, grain boundary strengthening, TCP phase, Embrittlement, solidification of single crystals, Inter-metallics, high temperature ceramics.

UNIT II CERAMICS

Introduction – powder metallurgy - modern ceramic materials – cermets - cutting tools – glass ceramic – production of semi fabricated forms - plastics and rubber – carbon/carbon composites, fabrication processes involved in metal matrix composites - shape memory alloys – applications in aerospace vehicle design, open and close mould processes.

UNIT III HIGH TEMPERATURE MATERIALS CHARACTERIZATION 9

Classification, production and characteristics – determination of mechanical and thermal properties of materials at elevated temperatures – heat treatment of carbon steels – aluminium alloys, magnesium alloys and titanium alloys – effect of alloying treatment, heat resistance alloys – tool and die steels, magnetic alloys, application of these materials in thermal protection systems of aerospace vehicles – super alloys – high temperature material characterization.

UNIT IV CREEP AND FRACTURE RESISTANCE

Design of transient creep time, hardening, strain hardening, expressions of rupture life of creep, ductile and brittle materials, types of fracture, brittle to ductile from low temperature to high temperature, cleavage fracture, ductile fracture due to micro void coalescence-diffusion controlled void growth; fracture maps for different alloys and oxides.

UNIT V NON DESTRUCTIVE TESTING

Principle of NDT, types of cracks and their growth, Red Dye Penetrant method, Fluorescent Penetrant method, X-Ray, Magnetic Particle Inspection method, Ultra sonic method, Eddy Current Inspection method of crack detection.

TEXT BOOK:

TEXT BOOKS:

- 1. Titterton.G., "Aircraft Materials and Processes", V Edition, Pitman Publishing Co., 1995.
- 2. Hertzberg R. W., "Deformation and Fracture Mechanics of Engineering materials", 4th Edition, John Wiley, USA, 1996.
- 3. Courtney T.H, "Mechanical Behavior of Materials", McGraw-Hill, USA, 1990.

REFERENCES:

- 1. Martin, J.W., "Engineering Materials, Their properties and Applications", Wykedham Publications (London) Ltd., 1987.
- 2. Van Vlack. L.H., "Materials Science for Engineers", Addison Wesley, 1985.
- 3. Raghavan.V., "Materials Science and Engineering", Prentice Hall of India, New Delhi, 1993.
- 4. Bressers. J., "Creep and Fatigue in High Temperature Alloys", Applied Science, 1981.
- 5. McLean D., "Directionally Solidified Materials for High Temperature Service", The Metals Society, USA, 1985.

Course Designers:

S.No	Name of the Faculty	Mail ID
1	Senthil kumar M	senthil@vmkvec.edu.in
2	R.Gowri Shankar	gowrishankar@vmkvec.edu.in
3	Sanjay Singh	sanjay@vmkvec.edu.in

9

9

9

Q

AUTOMOBILE ENGINEERING -OPEN ELECTIVE

	ТЕС02	NJ	EW G	ENERA			HYB	SRID	Ca	ategory	L	Т	н	Р	Credit
	VEHICLES EC (OE) 3 0 0												0	3	
PREA	AMBL	E												. <u> </u>	
To tea	<i>ich the</i>	stude	nts ab	out the n	iew ge	neratio	on and	l hybr	id veh	icles					
PREF	REQUI	ISITE	L: NIL	·											
COU	RSE O	BJE	CTIVI	ES											
1	To un	ders <u>ta</u>	ınd the	e hybrid	veh <u>icl</u>	es.									
2	To un	dersto	and the	e power i	svsten	and n	ew ge	nerat	ion ve	hicles.					
3				ne vehicl											
4								<u>mnoi.</u>							
	To stu	dy ab	out ve	hicle au	<u>tomate</u>	ed traci	ks								
5	To stu	dy au	<u>tomoti</u>	ive suspe	ension	, brake	s, aer	odync	imics	and saj	fety				
COU	RSE O	UTC	OME	S											
On the			-	letion of											
CO1.	Ability to understand the importance of Hybrid vehicle Understand														
CO2.	Stud	ent Sl	nould	be able t	o unde	erstand	labou	t GBS	;					Und	erstand
CO3.	Stud	ent sh	iould §	get know	ledge	of veh	icle sp	peed c	ontro	l by EC	ЗM			Und	erstand
CO4.	One	shoul	ld be a	ble to id	lentify	the ve	hicle l	how to	o cont	rol by	satellit	e		A	pply
CO5.	How	to m	easure	e the veh	icle sa	fety ar	nd its (comp	onents	\$					pply
мар	PING [®]	WIT]	 Н РR (OGRAN	/ME (OUTC	OME	S AN	D PR	OGR/	AMMI	E SPE(CIFIC		
IVE/ BB .	COME														
	· · ·		,		PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO 2	PSO3
	PO1	PO2	PO3	PO4	105		1 1	1	•	' 1		1			
OUT	PO1 S	PO2 M	PO3 L	L PO4				L				М	L		
OUT COS												M M	L L		
OUT COS CO1	S	М	L	L				L							
COS CO1 CO2	S S	M M	L M	L L				L M				М	L		

UNIT-II POWER SYSTRM AND NEW GENERATION VEHICLES

Hybrid Vehicle engines, Stratified charge engines, learn burn engines, low heat rejection engines, hydrogen engines, HCCI engine, VCR engine, surface ignition engines, VVTI engines. High energy and power density batteries, fuel cells, solar panels, flexible fuel systems

UNIT-III VEHICLE OPERATION AND CONTROL

Computer Control for pollution and noise control and for fuel economy – Transducers and actuators -Information technology for receiving proper information and operation of the vehicle like optimum speed

UNIT-IV VEHICLE AUTOMATED TRACKS

Preparation and maintenance of proper road network - National highway network with automated roads and vehicles - Satellite control of vehicle operation for safe and fast travel, GPS.

UNIT-V SUSPENSION, BRAKES, AERODYNAMICS AND SAFETY

Air suspension – Closed loop suspension, compensated suspension, anti-skid braking system, retarders, regenerative braking, safety gauge air backs- crash resistance. Aerodynamics for modern vehicles, safety systems, materials and standards.

TEXT BOOKS:

Heinz, "Modern Vehicle Technology" Second Edition, Bu Bosch Hand Book, SAE Publication, 2000

Reference:

Light weight electric for hybrid vehicle design.

Advance hybrid vehicle power transmission, SAE.

Noise reduction, Branek L.L., McGraw Hill Book company, New York, 1993.

S.N 0	Name of the Faculty	Designation	Department / Name of the College	Mail ID
1	SAMUVEL MICHAEL	Asso.Prof Gr-II	MECH/AVIT	samuvelmichael@avit.ac.in

1747	гесоз		M	ODERN	AUT	OMO	BILE		Ca	tegory	L	Т	,	Р	Credit
17A1	LECU	,		ACC	ESSO	RIES			E	C(OE)	3	0		0	3
	MBL ach the		ents ab	out the v	various	s Autor	nobile	e acce	ssorie	es in Me	odern	Vehicle	S		
PREF	REQU	ISITI	E: NIL												
COU	RSE C	BJE	CTIV	ES											
1	To un	dersta	and the	e Engine	Mana	igemen	t Syst	ems							
2	To un	dersta	and the	e Chassi	<i>s</i> .										
3	To un	dersta	and the	e Heatin	g and .	Air Co	nditio	ning							
4	To im	part t	he var	ious Coi	nfort c	and Co	nveni	ence							
5	To un	dersta	and the	e variou	s Safet	y and S	Securi	ty Sys	stems						
COU	RSE C	OUTC	COME	S											
On the	e succe	essful	comp	etion of	the co	urse, s	tuden	ts will	l be al	ole to					
CO1.	Und	erstar	nd the	working	princi	ple an	d Dev	elopn	nent E	EGM				Und	erstand
CO2.	Und	erstar	nd the	working	princi	iple an	d Dev	elopn	nent S	uspens	ion Sy	stem		Und	erstand
CO3.	Und	erstar	nd the	working	princi	iple of	Air C	onditi	ion Sy	vstem.				Und	erstand
CO4.	Und	erstar	nd the	working	princi	ple of	vehic	le con	nfort					А	pply
CO5.	Und	erstar	nd they	vehicle s	afety									А	pply
MAP	PING	WIT	H PRO	OGRAN	IME (OUTC	OME	S AN	ID PR	OGRA	MMF	E SPE(CIFIC	OUTC	OMES
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	L	L				L				М	L		
CO2	S	М	М	L				М				М	L		
CO3	S	М	М	L				L				М	L		
CO4	S	S	S	М	L			М				М	L		
CO5	S	S	S	М	М			М				М	L		
S- Str	ong; N	A-Me	dium	; L-Low											

ENGINE MANAGEMENT

Electronically controlled SI and CI engine fuel injection systems, related hardware and software. Closed loop ignition system. Catalytic converters and particulate traps.

CHASSIS

Active suspension control, Pneumatic suspensions

HEATING AND AIR CONDITIONING

Principles of vehicle air conditioning and heating.

COMFORT AND CONVENIENCE

Adaptive cruise control, car entertainment, power windows, navigation system, adaptive noise control, electric seats, driver information system. Power windows, power steering.

SAFETY AND SECURITY SYSTEMS

Airbags, seat belt tightening system, collapsible and tilt able steering column, Anti-theft system, anti-lock braking system, electronic stability control system/traction control system, roll over protection system.

Text Books:

1 Bosch Automotive Hand Book - 5th Edition - SAE Publication, USA - 2000.

Reference:

1 Tom Denton - "Automobile Electrical and Electronic Systems" - Edward Arnold, London - 1995.

2. Eric Chowanietz - "Automotive Electronics" - SAE International USA - 1995.

S.N 0	Name of the Faculty	Designation	Department / Name of the College	Mail ID
1	SAMUVEL MICHAEL	Asso.Prof Gr-II	MECH/AVIT	samuvelmichael@avit.ac.in

1787	EC05	Α	ND R	UBBE	COMI ER MA	ATER		(Categor	y	L	Т	Р	C	Credit
1/A1	EC05	II	N AUT PPLI)BILF ONS	E		F	EC(OE	E)	3	0	0		3
Pream To tea						ymers	and 1	rubber	rs in A	utomo	bile ap	oplicati	ons.		
Prere	quisite	e NIL	4												
Cours	se Obj	ective	;												
1 ′	To unc	lerstar	nd the	plasti	CS										
2 '	To unc	lerstar	nd the	struct	ture-p	roper	ty rela	ations	hip of 1	rubbeı	•				
3 '	To unc	lerstar	nds the	e vibr	ation	and ru	ıbber	spring	5						
4 ′	To stu	dy abo	out flu	id sea	ling's	5.									
5	To stu	dy cor	npour	nding	and m	nanufa	acture	•							
Cours	se Out	come	s: On	the s	ucces	sful c	omple	etion	of the	cours	e, stud	lents w	ill be ab	le to	
CO1.		n knov mobil	-	e abou	ıt vari	ous rı	ıbber	comp	onents	used	in		Underst	and	
CO2.		n the k erials.	nowle	edge	of var	ious s	structu	ire pro	opertie	s of R	ubber		Underst	and	
CO3.	Eva	luate t	he vai	rious	vibrati	ion ch	aracte	eristic	s of R	ubber	spring	.	Apply		
CO4.	Imp	art the	know	vledge	e of va	arious	Fluid	l seali	ngs &	Flexit	ole hos	es	Underst	and	
CO5.	-	gain th olings.		wledg	ge of c	compc	oundir	ng and	l manu	factur	e of		Underst	and	
Марр	oing w	ith Pr	ograr	nme (Outco	omes a	and P	rogra	amme	Speci	fic Ou	tcomes	ł		
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	L	L	L	L	S	S	S	М	S	L	S			
CO2	S	М	L	L	L	М	М	М	М	М	L	М			
CO3	S	М	М	М	L	S	S	S	М	S	L	S			
CO4	s	М	М	М	L	М	М	М	М	М	L	М			
CO5	S	М	L	L	L	Μ	М	М	М	М	L	М			
S. Stro	ng; M-	Medim	m• I _I	0.11											

INTRODUCTION

Identification of plastics / rubber components in automobiles - function - selection criteria.

STRUCTURE-PROPERTY RELATIONSHIP OF RUBBER

Resilience, creep, hysteresis and damping, stability, set and stress relaxation, behavior in dynamic applications.

VIBRATION AND RUBBER SPRING

Principle of vibration isolation - Rubber mounts - spring design - comparison with metallic springs - shape factor and its effect - forced and free vibrations with damping - typical mounts, compounding .

FLUID SEALINGS AND FLEXIBLE COUPLING AND HOSES

Seals for static and dynamic applications - effect of heat/ oil ageing - frictional behavior - fundamental of sealability.

COMPOUNDING AND MANUFACTURE

Types of couplings - specification and selection- torque Vs deflection relationships - brake fluid /hydraulic hoses, materials and manufacture

Text Books

1	Freakley.P.K., and Payne A.R., Theory and Practice of Engineering with Rubber., Applied
T	Science Publishers Ltd.

Reference Books

1 Hobel,E.F., Rubber Springs Design

2 Blow,C.M. and Hepburn.C, Rubber Technology and Manufacture

Course Designers

00000													
S.No	Faculty Name	Designation	Department/Na me of the College	Email id									
1	C.THIAGARAJAN	ASST. PROF GRII	MECH./ AVIT	cthiagarajan@avit.ac.in									

174	7ATEC12 FUEL CELL TECHNOLOGY L T											P	Credit		
174	ILCIZ	'	FUE		ILC		LUU	1	Ε	C(OE)	3	0)	0	3
	AMBL udy and		erstand	l the subst	itute	for co	nvent	ional	autom	obile fi	uels an	d ener	gy sour	се	
PREI	REQU	ISITI	E: NIL												
COU	RSE C	BJE	CTIV	ES											
1	To im	part t	he kno	wledge of	vari	ous al	ternat	e fuel.	s in ve	ehicles.					
2	To un	dersta	and the	e entire pr	oper	ties of	alcoh	ols.							
3	To un	dersta	and the	e various f	uels	like na	itural	gas, l	LPG, i	hydrog	en and	biogas	5		
4	To im	part t	he kno	wledge of	vege	etable	oils								
5	To in	ipart	the kno	owledge oj	^c eleo	ctric a	nd sol	ar vel	nicles						
-		-													
	RSE C			s letion of th	A 00	111100 0	tudan	to will	l ba al	ale to					
$\frac{\text{OII III}}{\text{CO1.}}$	To 1		-	ailed study										Und	erstand
	То	learn	the de	tailed stud	v of	altern	ate fue	el's pr	operti	es					
CO2.				ailed study										Und	erstand
CO3.				•			·	e						Und	erstand
CO4.				now to use										A	pply
CO5.	101	earn r	low to	design the	e ele	ctric d	rive v	enicie						А	pply
MAP	PPING	WIT	H PR(OGRAMN	AE (OUTC	OME	ES AN	D PR	OGRA	MMF	E SPE(CIFIC	OUTCO	OMES
COS	PO1	PO2	PO3	PO4	P O 5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	L	L	-			L				М	L		
CO2	S	М	М	L	-			М				М	L		
CO3	S	М	М	L	-			L				М	L		
CO4 CO5	S	S	S	М	L			М				М	L		
	S	S	S	М	Μ			Μ				Μ	L		

FUELCELL TECHNOLOGY	
Structures, Operations and properties of Fuel cells – (Phosphoric Acid Fuel cell, Proton Exchange	
membrane Fuel cell, Direct Methanol fuel cell Alkaline Fuel Cells, Solid Oxide Fuel Cell, Molten	
Carbonate Fuel Cell) -Characteristics. Electrochemical energy conversion – Theoretical efficiency –	
Factors affecting electrochemical energy conversion- Helmholtz double layer model.	INTRODU
FUEL CELL BASED VEHICLES STRUCTURE	
PEMFC: Operating principle (membranes, electrodes and electrolysis, optimization of membrane	
and electrode assembly, impurities) – Technology development (single cell and	
stacks, composite plates) - Fuel processing - Modeling studies (membrane, electrode, membrane-	
electrode assembly, fuel cell, stack and system) – Technology development and applications.	
DMFC: Operating principle – Noble metal issue – Electro-oxidation of methanol (Catalysts, oxygen	
electroreduction, electrolyte, non catalytic aspects) - Methanol crossover.	
HYBRID ELECTRIC TECHNOLOGY AND ELECTRIC DRIVETRAIN	
Introduction to Hybrid Electric Vehicles: History of hybrid and electric vehicles, social and	
environmental impartance of hybrid and electric vehicles, impact of modern drive-trains on energy	
supplies. Basic concept of hybrid traction, introduction to various hybrid drive-train topologies,	
power flow control in hybrid drive-train topologies, fuel efficiency analysis. Basic concept of	
electric traction, introduction to various electric drive-train topologies, power flow control in electric	
drive-train topologies, fuel efficiency analysis. Electric Propulsion unit: Introduction to electric	
components used in electric vehicles, Configuration and control of DC Motor drives, Configuration	
and control of Induction Motor drives, configuration and control of Permanent Magnet Motor	
drives, Configuration and control of Switch Reluctance Motor drives, drive system efficiency.	
UNIT IV - HYBRID ELECTRIC VEHICLES	
Principles of Hybrid Electric Drivetrains, Architectures – Electrical distribution, Hybrid control	
Strategies - Parallel Hybrid, Series Hybrid - (Charge Sustaining, Charge Depleting), Practical	
Models – Toyota Prius, Honda Insight. Hybridization Effects. 42 V System for Traction	
Applications - Lightly Hybridized vehicles, Low -Voltage Storage System, Low - Voltage main	
system with High voltage bus for propulsion. Heavy Vehicles Hybrid Electric Heavy Duty Vehicles,	
Fuel cell Heavy duty vehicles.	
UNIT V - HYBRID VEHICLE TECHNOLOGY	
Sizing the drive system: Matching the electric machine and the internal combustion engine (ICE),	
Sizing the propulsion motor, sizing the power electronics, selecting the energy storage technology,	
Communications, supporting subsystems. Energy Management Strategies in hybrid and electric	
vehicles, classification of different energy management strategies, comparison of different energy	
management strategies, implementation issues of energy management strategies. Case Studies:	
Design of a Hybrid Electric Vehicle (HEV), Design of a Battery Electric Vehicle (BEV).	
TEXT BOOKS:	
 Basu .S, "Recent Trends in Fuel cell Science and Technology", Anamaya Publishers, New Delhi.,2007. 	
 Viswanathan, B. and Aulice Scibioh, M., "Fuel Cells Principles and Applications", Universities Press (India) Pvt. Ltd., Hyderabad, 2006. 	
3. Hoogers, G., Edr. "Fuel Cell Technology Handbook", CRC Press, Washington D. C,2003.	
	1
Reference:	

1) Larminie, J. and Dicks, A., "Fuel Cell Systems Explained" John Wiley & Sons, Ltd., New York, 2001.

2) Ali Emadi, Mehrdad Ehsani, John M. Muller, "Vehicular Electric Power Systems", Marcel Dekker, Inc., 2004.

S.N o	Name of the Faculty	Designation	Department / Name of the College	Mail ID
1	SAMUVEL MICHAEL	Asso.Prof Gr-II	MECH/AVIT	samuvelmichael@avit.ac.in

174	TEC1	3	сп		APU7	FER N OF	IC	Ca	tegory		L	Т	Р		Cree	lit
1/11		5				CESS		EC	C(OE)		3	0	0		3	
	mble															
	iis coui d simul									perat	ture, ar	nalysis	of actu	al and	ideal c	cycles
	equisit		1015.	i, and		ignic		mane	C							
NIL	-															
	rse Ob	jecti	ve													
1	1 To know the measurement of HRR and calculation of Adiabatic flame temperature of IC engines															
2	To study I.C engine simulation with Adiabatic combustion															
3	To learn the simulation of IC engines with gas exchange processes and engine performance simulation															
4																
5	To study the simulation of C.I engine performance															
Cou	Course Outcomes: On the successful completion of the course, students will be able to															
CO1	CO1. Analyze the measurement of HRR and calculation of Adiabatic flame temperature Analyze															
CO2					e sim	ulatio	n witł	n Adia	batic	comb	oustion		Apply	/		
CO3			ne simu ine per					vith ga	is excl	nange	proce	sses	Apply	ý		
CO4	App		ne Sim					ith in	take a	nd ex	haust		Apply	/		
CO5			ne simu	ulation	n of C	.I eng	ine pe	erforn	nance				Apply	ý		
Map	ping w	ith I	Progra	mme	Outo	comes	and	Progr	amm	e Spe	cific C	Outcom	nes			
C	2O	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
C	01	S	М	L	L	М										
C	02	S	М	L	L	L										
C	03	D3 S M L L M														
С	04	S	М	L	L	М		L								
C	CO5 S M L L M L															
S- Sti	S- Strong; M-Medium; L-Low															
SYL	LABU	S														

INTRODUCTION

Introduction – Heat of reaction – Measurement of URP – Measurement of HRR – Adiabatic flame temperature: Complete combustion in C/H/O/N Systems, Constant volume adiabatic combustion, constant pressure adiabatic combustion. Calculation of adiabatic flame temperature – Isentropic changes

ENGINE SIMULATION WITH AIR AS WORKING MEDIUM

Deviation between actual and ideal cycle – problems, SI engine simulation with adiabatic combustion, temperature drop due to fuel vaporization, full throttle operation – efficiency calculation, part – throttle operation, super charged operation.

PROGRESSIVE COMBUSTION

SI Engines simulation with progressive combustion with gas exchange process, Heat transfer process, friction calculation, compression of simulated values, validation of the computer code, engine performance simulation, pressure crank angle diagram and other engine performance.

SIMULATION OF SI ENGINE

Intake – Exhaust - Charging and Combustion Simulation for two stroke and four stroke spark ignition Engine

DIESEL ENGINE SIMULATION

Zero, one and multi zone model for combustion, different heat release and heat transfer models, equilibrium calculations, simulation of engine performance.

1	Ganesan.	Ganesan. V - "InternalCombustion Engines" - Tata McGraw-Hill, 2003.										
2	Ganesan.V	Ganesan.V. – Computer Simulation of compression ignition engines – Orcent										
Reference Bo	e Books											
1	Ramoss A.L. Modeling of Internal Combustion Engines process, McGraw Hill Publishing Co., 1992											
2	Ashley Cambel, Thermodynamics analysis of combustion engines, John Wiley & Son, New York, 1986.											
3	Benson, R.S., Whitehouse, N.D., Internal Combustion Engines, Pergamon Press, Oxford, 1979.											
Course Desig	se Designers											
S.No	Faculty Name	Designation	Department/Na me of the College	Email id								
1	A.IMITH YASASST PROF G1AVITimthicyr@gmail.com											

1787	EC14		COMI					Cate	egory	L		Т	Р	Cre	edit
1/A1	EC14		CONT /EHI			EM		EC(OE)	3		0	0	,	3
	ourse	introd	uces t	he rol	e of s	ensors					0		ngine, dr olled by c		
Preree NIL	quisite	2													
Cours	se Obj	ective	•												
1 7	Fo knc	w the	contro	ol Aut	onom	y of ve	ehicl	es							
2 7	Γo stu	ly cor	npute	r cont	rolled	fuel, I	gniti	on , S	peed	and kn	ock sy	vstem	of IC eng	gine	
3 7	To lea	n the	comp	uter c	ontrol	lled dri	ve li	ne sys	stem c	of Auto	mobil	e			
4 7	Fo stu	dy ab	out th	e com	puter	contro	l trai	nsport	ation	system					
5 7	To learn about the smart safety devices of Automobile														
Cours	se Out	come	s: On	the s	ucces	sful co	mple	etion	of the	cours	e, stu	dents	will be a	ble to	
CO1.	D1. Understand the role of sensors and actuators used in vehicle Understand														
CO2.	-			nition	, spee	ed and	knoc	k in I	C eng	ine			Apply		
CO3.	Con	trol D	rive li	ne sys	stem,	Steerin	ıg an	d susp	pensic	on syste	ems		Apply		
CO4.	Und	erstan	d inte	lligen	t trans	sportati	ion s	ystem	l				Underst	and	
CO5.	Ana	lyze tł	ne sma	art saf	ety D	evices	used	l in Aı	utome	biles			Analyze	2	
Mapp	ing w i	ith Pr	ograr	nme	Outco	omes ai	nd P	rogra	mme	Specif	ïc Ou	tcom	es		
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1	2 PSO1	PSO2	PSO3
CO1	S	L	М	L	М	L									
CO2	S	L			М	L									
CO3	S	L				L									
CO4	S	L	М	М	М	М	Μ		L	L		L			
CO5	S	М			М	М	М								
S- Stro	ng; M-	Mediu	m; L-L	.ow											
SYLL	ABUS	5													
INTR	ODU	CTIO	N												

Understanding autonomy – Review of the role of control in autonomy (speed control, suspension control & integrated vehicle dynamics) - Role of sensors and actuators. Examples of autonomy cruise control

ENGINE CONTROL SYSTEM

Fuel control-Ignition control in SI engines- Lambda control- idle speed control- Knock control- cylinder balancing

DRIVE LINE CONTROL SYSTEM

Speed control – gear shifting control – traction /braking- steering- suspension – vehicle handling and ride characteristics of road vehicles- adaptive cruise control

INTELLIGENT TRANSPORTATION SYSTEM

Overview – control architecture – collision avoidance, pitch, yaw, bounce control – traffic routing system- automated high way systems- lane warning system- driver information system- data

SAFETY IMPACTING DEVICES

Vision enhancement- driver conditioning warming- anti-lock braking systems – route guidance and navigation systems – in-vehicle computing – commercial vehicle diagnostic/ prognostics – hybrid/ electric and future cars- case study.

1	Automotive contr	ol systems, U.Ki	ienckeand L. Nielson	, SAE and springer-Verlag, 2000							
Refere	ence Books										
1	Crouse, W.H. & Anglin, D.L., Automotive Mechanics, Intl. Student edition, TMH, New Delhi.										
2	Artamonov, M.D., Harionov, V.A. & Morin, M.M. Motor Vehicle, Mir Publishers, Moscow 1978										
3	Heitner, J., Automotive Mechanics, CBS Publishers, New Delhi 1987.										
4	Stockel Martin W and Stocker Martin T., Auto Mechanics Fundamentals, Goodheart Wilcox,										
Cours	rse Designers										
S.No	Faculty Name	Designation	Department/Na me of the College	Email id							
1	A.IMITHYAS	ASST PROF G1	AVIT	imthicyr@gmail.com							

17A'	TEC17	, 1 7	гни	LE A	IR.				Catego	y	L	Т	Р	0	Credit
1,111	12017	•		ITION				I	EC(OI	E)	3	0	0		3
	mble ach the	student	ts aboi	ut the	vehicle	e air-c	onditi	oning							
Prer	equisit	e NIL													
Cour	rse Obj														
1			•	•							ning sy	stems.			
2	To uno														
3	To uno									olant.					
4 To study about air routing and temperature control															
5 To study heater- air conditioner trouble shooting & service															
Cour	rse Out	come	s: On	the s	ucces	sful c	ompl	etion	of the	cour	se, stud	lents w	ill be ab	le to	
CO1.	Gai	n knov	vledge	e abou	ıt vari	ous a	ir con	dition	ing sy	stems	5		Underst	and	
Gain the knowledge of cooling and heating loads in an air- Understand															
CO2. conditioning system															
CO3. Evalute the diagonostic characteristics of Refrigeration system Apply															
CO4.	. Eva	lute th	e vari	ous te	sting	of ai	r cont	rol an	d han	lling	systems		Apply		
CO5.		rn the ems.	variou	is met	thods	of Tr	ouble	shoot	ing in	air co	ondition	ing	Underst	and	
Map	ping w	ith Pr	ogran	nme (Outco	omes	and P	rogra	amme	Spec	ific Ou	tcomes			
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	L	L	L	L	S	S	S	Μ	S	L	S			
CO2	S	М	L	L	L	М	М	М	М	М	L	Μ			
CO3	S	М	М	М	L	S	s	S	М	S	L	S			
CO4 S M M M L M M M M M L M															
CO5 S M L L L M M M M L M															
S- Str	ong; M·					•					1				

AUTOMOTIVE AIR-CONDITIONING FUNDAMENTALS

Basic Air conditioning system- Location of Air conditioning components in a car – schematic layout of a Refrigeration system. Compressor components- condenser and high-pressure service ports. Thermostatic expansion valve and Orifice tube – expansion valve calibration – evaporator temperature controls for air conditioning systems

AIRCONDITIONER – HEATING SYSTEM

Manually controlled air conditioner- Heater system- ford automatically controlled air conditioner- Heater systems- Chrysler automatically controlled air conditioner- heater system, general motors automatically controlled Air conditioner- heater system- Flushing and evacuating

REFRIGERANT

Containers- handling refrigerant – discharging, charging and leak detection – refrigeration system Diagnosis – Diagnostic procedure – Ambient conditions affecting system pressures

AIR ROUTING AND TEMPERATURE CONTROL

Objectives – Evaporators case air flow through the Dash recalculating unit – Automatic Temperature control – Duct system- Controlling flow – vacuum reserve – testing the air control and handling systems.

HEATER- AIR CONDITIONER TROUBLE SHOOTING

Air conditioner maintenance and service- servicing heater system. Removing and replacing components. trouble shooting of air conditioner- heating system- compressor service

- •• -													
1	William H Crouse and Donald L Anglin, Automotive Air Conditioning McGraw Hill inc; 1990.												
Refer	erence Books												
1	Mitchell information services, Inc., Mitchell Automotive Heating and Air conditioning systems,												
1	prentice Hall Inc, 1989.												
2	Raub Woisler A Praub With Shing, Westoni Publishing detioning, Rostone Publishing Co. Inc., 1990.												
3.	McDonald K.L., Automotive Air conditioning., Theodore Audel series., 1978												
4.	Goings.L.F., Automotive Air conditioning., American Technical services, 1974												
Cours	irse Designers												
S.No	Faculty NameDesignationDepartment/Na me of the CollegeEmail id												
1	C.THIAGARAJAN	ASST. PROF	MECH./ AVIT	cthiagarajan@avit.ac.in									
		GRII											

BIO MEDICAL ENGINEERING -OPEN ELECTIVE

PREAMBLE 3 0 0 3 PREAMBLE 3 0 0 0 3 0 0 0 0 0 3 0 0 0 0 0 0 0 3 0 <t< th=""><th>17RM</th><th colspan="10">BIOMECHANICS Categ</th><th>Categor</th><th>y L</th><th>Т</th><th>Р</th><th>Credit</th></t<>	17RM	BIOMECHANICS Categ										Categor	y L	Т	Р	Credit	
Biomechanics is the study of how the systems and structures of biological organisms, from the smallest plants to the largest nummans, react to various forces and external stimuli. In humans, biomechanics often refers to the study of how the skeletal und muscultarie systems work under different conditions. Sciencitists often try to apply physics and other mathematically based for the study of how the skeletal und muscultarie systems of analysis to discover the limits and capabilities of biological systems. PREEEUSITE : NI TO Study the fluid biomechanics of physiological systems. Solution the mathematical models used in the analysis of biological systems. Solution the principles of mechanics. COLUTORIENTIAL and the principles of biological systems. Solution the mathematical models used in the abele to COLUTION the principles of biological mechanics. Solution the principles of biological mechanics. Solution the principles of biological mechanics. Solution the principles of biological systems. Solution the principles of biological systems. Solution the mathematical models used in the abele to Solution the principles of biological mechanics. Solution the fundamental of biosolid mec						DIUNI	еспа	NICS				EC-SE	3	0	0	3	
COURSE OBJECTIVES 1 Explain the principles of mechanics. 2 To study the fluid biomechanics of physiological systems. 3 Discuss the solidbiomechanics of physiological systems. 4 Explain the mechanics of joints. 5 Illustrate the mathematical models used in the analysis of biomechanical systems COURSE OUTCOMES On the successful completion of the course, students will be able to COURSE OUTCOMES Understand COURSE out the principles of mechanics Understand COURSe out completion of the course, students will be able to COULUNDERStand the principles of bio fluid dynamics. Understand COURSE COURSE out in the fundamentals of biosolid mechanics. COURSTONE COURSTONE COURSTONE COURSTONE COURSTONE COURSTONE COURSTONE COURSTONE COURSTONE COURESTONE Co	Biomec animals and mu based f	chanics s, react isculatu forms of	to vario re syste analys	ous force ems wo is to dis	es and ork unde	externa er diffe	l stimu rent co	li. In hu nditions	umans, s. Scien	biomec tists of	hanics of ten try to	ften refer o apply p	s to the	study of	how the	skeletal	
1 Explain the principles of mechanics. 2 To study the fluid biomechanics of physiological systems. 3 Discuss the solidbiomechanics of physiological systems. 4 Explain the mechanics of joints. 5 Illustrate the mathematical models used in the analysis of biomechanical systems. On the successful completion of the course, students will be able to COURSE OUTCOMES Understand COULUNDERSTORE of bio fluid dynamics. Understand COURSE out to mechanics of biosolid mechanics. Understand COULUNDERSTORE COULUNDERSTORE COURSE out to mechanics. Understand COURSE out to mechanics. Understand COULUNDERSTORE COULES Understand COURESTORE COURESTORE COULUNDERSTORE COULUNDERSTORE COULUNDERSTORE COULUNDERSTORE COULESTORE <td cols<="" td=""><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td>	<td></td> <td>-</td> <td></td>		-														
2 To study the fluid biomechanics of physiological systems. 3 Discuss the solidbiomechanics of physiological systems. 4 Explain the mechanics of joints. 5 Illustrate the mathematical models used in the analysis of biomechanical systems COURSE OUTCOMES Understand the mechanics of physiological systems COURSE OUTCOMES Understand the principles of the course, students will be able to CO1.Understand the principles of mechanics. Understand CO2. Outline the principles of bio fluid dynamics. CO2. Outline the principles of bio fluid dynamics. CO4. Apply the knowledge of joint mechanics CO4. Apply the knowledge of joint mechanics CO5. Design computational mathematical modelling applied in biomechanics. CO5. Point PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES CO5 CO1 CO4 OP OP CO4 CO5 CO5 CO5 CO5 <td cols<="" td=""><td>COUR</td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td>	<td>COUR</td> <td>1</td> <td></td>	COUR	1														
3 Discuss the solidbiomechanics of physiological systems. 4 Explain the mechanics of joints. 5 Illustrate the mathematical models used in the analysis of biomechanical systems COURSE OUTCOMES Understand the principles of mechanics Understand COURSE outlond the principles of mechanics Understand COURSE outlond the principles of mechanics Understand COURSE outlond the principles of bio fluid dynamics. Understand CO2. Outline the principles of bio fluid dynamics. CO4. Apply the knowledge of joint mechanics CO5. Design computational mathematical modelling applied in biomechanics. Analyze MAPPING WITH PROGRAMME OUTCOMES CO5 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03 CO2 S M M M M CO5 PO3 PO4 <td< td=""><td>1</td><td colspan="13"></td></td<>	1																
4 Explain the mechanics of joints. 5 Illustrate the mathematical models used in the analysis of biomechanical systems COURSE OUTCOMES Understand the principles of the course, students will be able to Coll.Understand the principles of mechanics Understand CO2. Outline the principles of bio fluid dynamics. Understand CO3. Explain the fundamentals of biosolid mechanics. CO4. Apply the knowledge of joint mechanics CO5. Design computational mathematical modelling applied in biomechanics. Analyze CO5. PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03 CO3 S M M M M M M III PO12 PS01 PS02 PS03 CO2 S M M M M III PO12 PS01 PS02 PS03 CO3 S M M M M III PO12 PS01 PS02 PS03 CO3 S M M M M III PO1 PO12 PS01 PS02 PS03 CO3 S M M M III PO1 PO1 PO12 PS01 PS02 PS03 CO3 S M M M III PO1 PO1 PO1 PO11 PO12 PS01 PS02 PS03 CO3 S M M M III PO1 PO1 PO1 PO1 PO11 PO12 PS01 PS02 PS03	2																
Illustrate the mathematical models used in the analysis of biomechanical systems Solution of the mathematical models used in the analysis of biomechanical systems Understand COURSE OUTCOMES Understand the principles of mechanics Understand CO1.Understand the principles of mechanics. Understand CO2. Outline the principles of bio fluid dynamics. Understand CO3. Explain the fundamentals of biosolid mechanics. Understand CO4. Apply the knowledge of joint mechanics Apply CO5. Design computational mathematical modelling applied in biomechanics. Analyze COS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO2 PS01 PS02 PS03 CO2 S MA M CO5 <th< td=""><td>3</td><td colspan="13"></td></th<>	3																
Out completion of the course, students will be able to On the successful completion of the course, students will be able to CO1.Understand the principles of mechanics Understand CO2. Outline the principles of bio fluid dynamics. CO3. Explain the fundamentals of biosolid mechanics. CO4. Apply the knowledge of joint mechanics CO5. Design computational mathematical modelling applied in biomechanics. Apply MAPPINE WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES CO5. Point PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03 CO2 S M M M M M CO3 S M M M M CO3 S M M M M CO3 S M M -	4																
No the successful completion of the course, students will be able to Understand CO1. Understand the principles of mechanics Understand CO2. Outline the principles of bio fluid dynamics. Understand CO3. Explain the fundamentals of biosolid mechanics. Understand CO4. Apply the knowledge of joint mechanics. Apply CO5. Design computational mathematical modelling applied in biomechanics. Analyze CO5 PO1 PO2 PO3 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO3 CO2 S M M M PO6 PO7 PO8 PO9 PO10 PO1 PO1 PSO3 CO2 S M M M M M M M PSO3	5	5 Illustrate the mathematical models used in the analysis of biomechanical systems															
CO1.Understand the principles of mechanics Understand CO2. Outline the principles of bio fluid dynamics. CO3. Explain the fundamentals of biosolid mechanics. CO4. Apply the knowledge of joint mechanics CO5. Design computational mathematical modelling applied in biomechanics. CO5. Design Computational mathematical modelling applied in biomechanics. CO5. PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03 CO1 S M M M M M M M M CO2 S M M M M M	COUR	COURSE OUTCOMES															
CO2. Outline the principles of bio fluid dynamics. Understand CO3. Explain the fundamentals of biosolid mechanics. Understand CO4. Apply the knowledge of joint mechanics Apply CO5. Design computational mathematical modelling applied in biomechanics. Analyze CO5 PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03 CO1 S M M M M CO2 S M M M M M CO3 S M M M M L CO3 S M M M L	On the	success	ful con	pletion	of the	course,	student	s will t	be able t	.0							
Understand Understand CO3. Explain the fundamentals of biosolid mechanics. Understand CO4. Apply the knowledge of joint mechanics. Apply CO5. Design computational mathematical modelling applied in biomechanics. Analyze CO5. Design computational mathematical modelling applied in biomechanics. Analyze CO5. Design computational mathematical modelling applied in biomechanics. Analyze CO5. Design computational mathematical modelling applied in biomechanics. Analyze CO5. Design computational mathematical modelling applied in biomechanics. Analyze CO5. Design computational mathematical modelling applied in biomechanics. Analyze CO5. PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03 CO1 S M M M M M M M L CO3 S M	CO1.U	ndersta	nd the p	orincipl	es of m	echanic	S						Un	derstand			
CO4. Apply the knowledge of joint mechanics Apply CO5. Design computational mathematical modelling applied in biomechanics. Analyze MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES CO5. Design computational mathematical modelling applied in biomechanics. Analyze CO5. Design computational mathematical modelling applied in biomechanics. Analyze CO5. PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03 CO1 S M M M M M M I CO2 S M M M M M I CO2 S M M M M I CO2 S M M M M I CO3 S M M M I CO2 I	CO2. C	Outline t	he prin	ciples c	of bio fl	uid dyn	amics.						Un	derstand			
COS. Design computational mathematical modelling applied in biomechanics. Analyze MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES COS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03 COS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03 CO1 S M M M M M CO2 S M M M M L CO2 S M M M L CO2 S M M M <t< td=""><td>CO3. E</td><td>Explain</td><td>the func</td><td>lamenta</td><td>als of bi</td><td>osolid 1</td><td>nechan</td><td>ics.</td><td></td><td></td><td></td><td></td><td>Un</td><td>derstand</td><td></td><td></td></t<>	CO3. E	Explain	the func	lamenta	als of bi	osolid 1	nechan	ics.					Un	derstand			
MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES COS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03 CO1 S M M M M M M CO2 S M M M M M CO2 S M M M M L CO3 S M M L	CO4. A	Apply th	e know	ledge o	f joint 1	nechan	ics						Ap	ply			
COS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03 CO1 S M M M M M M CO2 S M M M M L CO3 S M M L	CO5. D	Design c	omputa	tional 1	nathem	atical n	nodellir	ıg appli	ed in bi	omecha	anics.		An	alyze			
CO1 S M M M M M M CO2 S M M M M M CO2 S M M M M L CO3 S M M L		MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES															
CO2 S M M M M L CO3 S M M M L	COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO3 S M M M L	CO1	S	М	М	М		М							М		М	
	CO2	S	М	М	М									М		L	
CO4 M M M M M I M	CO3	S	М	М										М		L	
	CO4	М	М	М	М	М	L							М			
CO5 S M M M M M M L	CO5	S	М	М	М	М								М		L	
S- Strong; M-Medium; L-Low	S- Strop	ng; M-N	Aedium	n; L-Lov	W												

INTRODUCTION TO MECHANICS

Introduction – Scalars and vectors, Statics – Force types, Resolution and composition of forces, Moments of force and couple, Resultant force determination, parallel forces in space, equilibrium of coplanar forces, Dynamics, Basic principles – Linear motion, Newton's laws of motion, Impulse and Momentum, Work and Energy Kinetics – Velocity and acceleration, Kinematics – Link segment models, Force transducers, Force plates, Introduction to Constitutive equations – Constitutive equations of Non-viscous fluid, Newtonian Viscous fluid and Hookean Elastic solid.

INTRODUCTION TO BIOFLUID MECHANICS

Intrinsic fluid properties - Density, Viscosity, Compressibility and Surface Tension, Viscometers Capillary, Coaxial cylinder and cone and plate, Rheological properties of blood, Pressure-flow relationship for Non-Newtonian Fluids, Fluid mechanics in straight tube - Steady Laminar flow, Turbulent flow, Flow development, Viscous and Turbulent Sheer Stress, Effect of pulsatility, Boundary Layer Separation, Structure of blood vessels, Material properties and modeling of Blood vessels, Heart - Cardiac muscle characterization, Native heart valves - Mechanical properties and valve dynamics, Prosthetic heart valve fluid dynamics.

BIOSOLID MECHANICS

Constitutive equation of viscoelasticity - Maxwell & Voight models, anisotropy, Hard Tissues - Structure, blood circulation, elasticity and strength, viscoelastic properties, functional adaptation, Soft Tissues - Structure, functions, material properties and modeling of Soft Tissues - Cartilage, Tendons and Ligaments Skeletal Muscle - Muscle action, Hill's models, mathematical modeling, Bone fracture mechanics, Implants for bone fractures.

BIOMECHANICS OF JOINTS

Skeletal joints, forces and stresses in human joints, Analysis of rigid bodies in equilibrium, Free body diagrams, Structure of joints, Types of joints, Biomechanical analysis of elbow, shoulder, spinal column, hip, knee and ankle, Lubrication of synovial joints, Gait analysis, Motion analysis using video.

MODELING AND ERGONOMICS

Introduction to Finite Element Analysis, finite element analysis of lumbar spine; Ergonomics-Musculoskeletal disorders, Ergonomic principles contributing to good workplace design, Design of a Computer work station, Whole body vibrations, Hand transmitted vibrations.

TEXT BOOKS:

- 1. Y.C. Fung, "Bio-Mechanics-Mechanical Properties of Tissues", Springer-Verlag, 1998.
- 2. Subrata Pal, "Text book of Biomechanics", Viva Books Private Limited, 2009.

REFERENCES:

- 1. Krishna B. Chandran, Ajit P. Yoganathan and Stanley E. Rittgers, "Biofluid Mechanics: The Human Circulation", Taylor and Francis, 2007.
- 2. Sheraz S. Malik and Shahbaz S. Malik, "Orthopaedic Biomechanics Made Easy", Cambridge University Press, 2015.
- 3. Jay D. Humphrey, Sherry De Lange, "An Introduction to Biomechanics: Solids and Fluids, Analysis and Design", Springer Science Business Media, 2004.
- 4. Shrawan Kumar, "Biomechanics in Ergonomics", Second Edition, CRC Press 2007.
- 5. Neil J. Mansfeild, "Human Response to Vibration", CRC Press, 2005.
- 6. Carl J. Payton, "Biomechanical Evaluation of movement in sports and Exercise", 2008.

COUR	COURSE DESIGNERS											
S.No.	Name of the Faculty	Designation	Department	Mail ID								
1	Dr. N.Babu	Professor	BME	babu@vmkvec.edu.in								
2	Mrs. S.Vaishnodevi	Assistant Professor	BME	vaishnodevi@vmkvec.edu.in								
3	Mrs. R.Indumathi	Assistant Professor (Gr-II)	BME	indhumr@avit.ac.in								

17BMSE15		BI	ΟΜΑΓ	ггрі	TSAP		RTIFICIAL O				Category	L	Т	Р	Credit
		DI	UMA	I L'NIA	LS AI	ND AN			JNGAT		EC-SE	3	0	0	3
PREAMBLE Biomaterials can be derived either from nature or synthesized in the laboratory using a variety of chemical approaches utilizing metallic components, polymers, ceramics or composite materials. It can be used every day in orthopaedic application, dental applications, surgery, and drug delivery. The primary objective of this course is to impart the knowledge on biomaterials needed to solve challenges in the biomedical engineering.															
PRERQUISITE : NIL															
COURSE OBJECTIVES															
1	To understand about the classes of biomaterials used in medicine and material characterization.														
2	To illustrate the properties, manufacturing methods and applications of various biomaterial.														
3	To illustrate the materials used in soft tissue replacement and implants in hard tissue replacements.														
4	To outline the host response to the biomaterial and degradation of implant materials.														
5	To examine the testing of material and various artificial organs.														
COURSE OUTCOMES															
On the successful completion of the course, students will be able to															
	D1. Describe the different classes of biomaterials and material characterization. Understand														
	CO2. Identify the suitable material and Manufacturing methods for bio implant applications. Apply														
-	CO3. Apply the knowledge to select suitable materials for tissue replacements. Apply														
	CO4. Analyze the mechanism of host-tissue interaction and failure of materials. Analyze														
	CO5. Apply the knowledge to test the biomaterials and predict the mechanism artificial organs. Apply MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES														
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8		PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	L								L			S		М	L
CO2	S					L			М			S		М	М
CO3	S					L			М			S		S	М
CO4	L	S	М		М	М			М			S	S	L	М
CO5	S				S	L			М		М	S		S	М
S- Strop	ng; M-N	/ledium	i; L-Lov	W											

INTRODUCTION TO BIOMATERIALS: Biomaterials – Definition, Classification of biomaterials, Structure of solids, Material characterization – Mechanical, thermal, Phase diagrams, Surface properties, Electrical, Optical, X-ray absorption, Acoustic and Ultrasonic, Density and porosity, Diffusion properties. Engineered natural materials, Technologies of biomaterials processing, Surface Coatings Methods, Surface modification of materials.

CLASSES OF BIOMATERIALS: Metals: Stainless steel, Cobalt-Chromium alloy, Titanium alloys. Polymers: Classification and Synthesis, Polyesters, Polyamides, Polyacrylates, Silicones, Hydrogels, Fluorocarbon polymers. Ceramics: Alumina, Zirconia, Hydroxyapatites. Composites as biomaterials.

SOFT AND HARD TISSUE APPLICATIONS: Sutures, Adhesives, Wound dressings, Maxillofacial and other Soft-tissue augmentation, Heart valve implant, Cardiovascular Grafts and Stents, Orthopedic fixation devices: Internal fixation devices - Wires, Pins, Screws, Fracture Plates and Intramedullary Devices. Joint replacement - Hip joint replacements, Knee joint replacements, Ankle joint replacement, Upper Extremity joint replacements, Dental implants.

HOST RESPONSE AND MATERIAL FAILURE: Host Reaction to Biomaterials - Inflammation, Wound healing, Foreign-body reaction, Blood–Materials Interactions. Degradation of Implanted Materials - Deterioration of polymers, Biodegradation of biostable and biodegradable polymers, Metal corrosion, Ceramic degradation. Device failure mode analysis.

BIOMATERIAL TESTING AND ARTIFICIAL ORGANS: Testing of biomaterials: In-vitro, In-vivo preclinical tests, Sterilization of implants and devices, Artificial Blood, Artificial skin, Artificial Heart, Artificial Kidney, Artificial lung (oxygenator), Artificial Pancreas, Eye and Ear implants.

TEXT BOOKS:

- 1. Joon park, R.S. Lakes, "Biomaterials and introduction", 3rd Edition, Springer Science Business Media LLC, 2007.
- 2. BD Ratner, AS Hoffmann, FJ Schoen, JE Lemmons, "An introduction to Materials in Medicine", 3rd Edition, Academic Press, 2013.

REFERENCES:

- 1. Sujata V. Bhatt, "Biomaterials", Second Edition, Narosa Publishing House, 2005.
- 2. Joseph D. Bronzino, "The Biomedical Engineering Hand Book", Second Edition, CRC Press LLC, 2000. "

COURSE DESIGNERS

S.No.	Name of the Faculty	Designation	Department	Mail ID		
1	Mr.K.Natarajan	Associate Professor	BME	natarajank@vmkvec.edu.in		
2	Mrs. R.Indumathi	Assistant Professor (Gr-II)	BME	indhumr@avit.ac.in		

17BMSE18	ROBOTICS & AU

Category	L	Т	Р	Credit
EC-SE	3	0	0	3

PREAMBLE

The purpose of learning this course on automation and robotics in medicine to acquire knowledge and understand the basic function and to create new application of robotic and automation system in medical field especially in surgery.

CO2. Outline the basics of automation and robotics in medicine.EvaluateCO3. Design basic Robotics system and formulate Kinematics.CreateCO4. Construct Inverse Kinematic motion planning solutions for various Robotic configurations.CreateCO5. Design Robotic systems for Medical application.CreateMAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMESCO5PO1PO1PO1PO11PO12PS01PS01CO2SMLMMAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMESCO3MLMPO1PO11PO12PS01PS01PS01PO3PO6PO7PO8PO9PO10PO11PO12PS01PO2PO3PO6PO7PO8PO9PO10PO11PO12PS01PO2PS3LCO2SLL <td c<="" th=""><th colspan="10"></th></td>	<th colspan="10"></th>															
1 To understand the basics of Robotics, Kinematics. 2 To understand the basics of Inverse Kinematics. 3 To explore various kinematic motion planning solutions for various Robotic configurations. 4 To study the basic inverse Kinematic motion planning solutions. 5 To explore various applications of Robots in Medicine. COURSE OUTCOMES On the successful completion of the course, students will be able to CO1. Understand the basics of robotic systems. Understand CO2. Outline the basics of automation and robotics in medicine. Co3. Design basic Robotic system and formulate Kinematics. Create CO4. Construct Inverse Kinematic motion planning solutions for various Robotic configurations. Co5. Design Robotic systems for Medical application. Create CO5. Posign Robotic systems for Medical application. Create COMES COS. Poli PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 CO2 S S M<	PREREQUISITE – NIL															
2 To understand the basics of Inverse Kinematics. 3 To explore various kinematic motion planning solutions for various Robotic configurations. 4 To study the basic inverse Kinematic motion planning solutions. 5 To explore various applications of Robots in Medicine. COURSE OUTCOMES On the successful completion of the course, students will be able to CO1. Understand the basics of robotic systems. Understand CO2. Outline the basics of automation and robotics in medicine. Co4. Construct Inverse Kinematic motion planning solutions for various Robotic configurations. Create CO4. Construct Inverse Kinematic motion planning solutions for various Robotic configurations. Create MAPPING WITH PROFRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES CO3. Pois PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO11 PO12 PS01 PS02 CO2 M M C CO2 CO3. PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO11 PO12 PS01 PS02 CO2 S L M M M M <td colspan="12">COURSE OBJECTIVES</td>	COURSE OBJECTIVES															
3 To explore various kinematic motion planning solutions for various Robotic configurations. 4 To study the basic inverse Kinematic motion planning solutions. 5 To explore various applications of Robots in Medicine. COURSE OUTCOMES On the successful completion of the course, students will be able to CO1. Understand the basics of robotic systems. Understand CO2. Outline the basics of automation and robotics in medicine. Evaluate CO4. Construct Inverse Kinematic motion planning solutions for various Robotic configurations. Create CO4. Construct Inverse Kinematic motion planning solutions for various Robotic configurations. Create CO5. Design Robotic systems for Medical application. Create MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC UTCOMES CO6 PO3 PO6 PO7 PO8 PO1 PO1 </td <td>1</td> <td colspan="11">To understand the basics of Robotics, Kinematics.</td>	1	To understand the basics of Robotics, Kinematics.														
4 To study the basic inverse Kinematic motion planning solutions. 5 To explore various applications of Robots in Medicine. COURSE OUTCOMES On the successful completion of the course, students will be able to COURSE OUTCOMES On the successful completion of the course, students will be able to COURSE OUTCOMES On the successful completion of the course, students will be able to CO1. Understand the basics of robotic systems. Understand CO2. Outline the basics of automation and robotics in medicine. Evaluate CO3. Design basic Robotic system and formulate Kinematics. Create CO4. Construct Inverse Kinematic motion planning solutions for various Robotic configurations. Create MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES CO3 PO1 PO1 <th cols<="" td=""><td>2</td><td colspan="11">To understand the basics of Inverse Kinematics.</td></th>	<td>2</td> <td colspan="11">To understand the basics of Inverse Kinematics.</td>	2	To understand the basics of Inverse Kinematics.													
5 To explore various applications of Robots in Medicine. COURSE OUTCOMES On the successful completion of the course, students will be able to CO1. Understand the basics of robotic systems. Understand CO2. Outline the basics of automation and robotics in medicine. Create CO4. Construct Inverse Kinematic system and robotics in medicine. Create CO4. Construct Inverse Kinematic motion planning solutions for various Robotic configuration. Create CO5. Design basic Robotic systems to text supplication. Create MAPPINE WITH PROFECTION Solution and robotic system and formulate Kinematics. Create CO4. Construct Inverse Kinematic motion planning solutions for various Robotic configuration. Create CO5. Design Robotic systems to FUE SULL SULL SULL SULL SULL SULL SULL SU	3	To explore various kinematic motion planning solutions for various Robotic configurations.														
COURSE OUTCOMES On the successful completion of the course, students will be able to CO1. Understand the basics of robotic systems. Understand CO2. Outline the basics of automation and robotics in medicine. Evolution of the course, students in medicine. CO3. Design basic Robotic system and robotics in medicine. Creater and the basics of automation and robotics in medicine. CO4. Construct Inverse Kinematic motion planning solutions for various Robotic configurations. Creater and the basic solution and robotics in medicine. CO4. Construct Inverse Kinematic motion planning solutions for various Robotic configurations. Creater and the basic solution and robotics in medicine. CO4. Construct Inverse Kinematic motion planning solutions for various Robotic configurations. Creater and the basic solution and robotics in medicine. CO4. Construct Inverse Kinematic motion planning solutions for various Robotic configurations. Creater and the basic solution and robotics in medicine. CO4. Construct Inverse Kinematic motion planning solutions for various Robotic solutions. Creater and the basic solution and the basic solutions for various Robotic solutions. CO5. Design For VECENTERENT EXENT	4	To study the basic inverse Kinematic motion planning solutions.														
On the successive of the course, students will be able to systems. Understand to basics of robotic systems. CO1. Understand the basics of robotic systems. Understand to basics of robotic systems. CO2. Outline the basics of robotic system and robotics in medicine. Evaluate CO3. Design basic Robotic system and formulate Kinematics. Creater to the college of the	5	To explore various applications of Robots in Medicine.														
CO1. Understand the basics of robotic systems. Understand the construction and robotics in medicine. CO2. Outline the basics of automation and robotics in medicine. Evaluate CO3. Design basic Robotics system and formulate Kinematics. Create CO4. Construct Inverse Kinematic motion planning solutions for various Robotic configuration. Create CO5. Design Robotic systems for Medical application. Coreate Create MAPPING WITH PO2 PO3 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 CO5. PO11 PO2 PO3 PO6 PO7 PO8 PO10 PO11 PO12 PS01 PS01 <th colspan<="" td=""><td colspan="10">COURSE OUTCOMES</td></th>	<td colspan="10">COURSE OUTCOMES</td>	COURSE OUTCOMES														
CO2. Utiline the basics of automation and robotics in medicine. Evaluate CO3. Using the basics of automation and robotics in medicine. Creater Co3. Using the basics of automation and robotics in medicine. CO4. Using the basics of automation and robotics in medicine. Creater Co3. Using the basics of automation and robotics in medicine. CO4. Using the basics of automation and robotics in medicine. Creater Co3. Using the basic system subtropy to the	n the s	success	ful con	npletior	n of the	course,	studen	ts will t	be able	to				1		
CO3. Design basic Robotics system and formulate Kinematics. Create Crea	CO1. Understand the basics of robotic systems. Understand															
CO4. Construction: Inverse Kineten static motion planning solutions for various for various robotic configurations. Create construction: CO5. Design Robotic systems for Verture systems for V	C O2. O	Dutline	the bas	ics of a	utomati	ion and	roboti	cs in m	edicine					Eval	uate	
COS. Design Robotic systems for Wedical application. Create MAPPING WITH PROGRAMME OUTCOMES SAMME OUTCOMES COS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 COS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 CO1 S S M L S L M M M M I M I M I M I <td>203. D</td> <td>Design</td> <td>basic R</td> <td>obotics</td> <td>system</td> <td>and fo</td> <td>rmulate</td> <td>Kinem</td> <td>natics.</td> <td></td> <td></td> <td></td> <td></td> <td>Crea</td> <td>te</td> <td></td>	2 03. D	Design	basic R	obotics	system	and fo	rmulate	Kinem	natics.					Crea	te	
NAPPING WITH PROGRAMME OUTCOMES NAPPING WITH PROGRAMME OUTCOMES COS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 CO1 S S M L S L M PO10 PO11 PO12 PS01 PS02 CO1 S S M L S L M M M PO10 PO11 PO12 PS01 PS02 CO2 S S L L M M L M M M Image: Colspan="1">Month PO12 PS01 PS02 PS02 CO2 S S L L M M Image: Colspan="1">Month PO12 PS01 PS02 PS02 PS02 PS02 PS02 PS02 PS02 PS02	C O4. C	Constru	ct Inve	rse Kin	ematic	motion	plannir	ıg solut	ions for	r variou	s Roboti	c configu	rations.	Crea	te	
COS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS01 CO1 S S M L S L M M M PO10 PO11 PO12 PS01 PS011 PS011 PS011	C 05. D	Design	Robotic	e syster	ns for M	Iedical	applica	tion.						Crea	te	
CO1 S S M L S L M M M M M M M M M M M M M M Image: Constraint of the state o	IAPPI	ING W	ITH P	ROGR	AMMI	E OUT	COME	S AND	PRO(GRAM	ME SPE	CIFIC (DUTCO	MES		
CO2 S L L M M L M CO3 M M L L M L M M	COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO3 M L L M L M M	201	S	S	М	L				S	L			М			
	202	S	S	L	L				М	М			L	М		
CO4 M M L L L M L M	CO3	М	М	L	L				М	L			М	М		L
	CO4	М	М	L	L				L	М			L	М		М
CO5 M L L L L L L M L	CO5	М	L	L	L				L	L			М	L		

S- Strong; M-Medium; L-Low

SYLLABUS

INTRODUCTION

Introduction Automation and Robots, Classification, Application, Specification, Notations, Direct Kinematics Dot and cross products, Coordinate frames, Rotations, Homogeneous coordinates Link coordination arm equation – Five-axis robot, Four-axis robot, Six-axis robot.

KINEMATICS

Inverse Kinematics – General properties of solutions tool configuration, Five axis robots, Three Four axis, Six axis Robot, Workspace analysis and trajectory planning work envelope and examples, workspace fixtures, Pick and place operations, Continuous path motion, Interpolated motion, Straight-line motion.

ROBOT VISION

Robot Vision Image representation, Template matching, Polyhedral objects, Shane analysis, Segmentation -Thresholding, region labeling, Shrink operators, Swell operators, Euler numbers, Perspective transformation, Structured illumination, Camera calibration.

PLANNING

Task Planning Task level programming, Uncertainty, Configuration, Space, Gross motion, Planning, Grasp Planning, Fine-motion planning, Simulation of planar motion, Source and Goal scenes, Task Planner simulation.

APPLICATIONS

Applications in Biomedical Engineering – Bio Engineering, Biologically Inspired Robots, Neural Engineering, Application in Rehabilitation - Interactive Therapy, Bionic Arm, Clinical and Surgical - Gynaecology, Orthopaedics, Neurosurgery.

TEXT BOOKS:

- 1. Robert Schilling, "Fundamentals of Robotics-Analysis and control", Prentice Hall, 2003.
- J.J.Craig, "Introduction to Robotics", Pearson Education, 2005. 2

REFERENCES:

- 1. Staugaard, Andrew C, "Robotics and Artificial Intelligence: An Introduction to Applied Machine Learning", Prentice Hall Of India, 1987
- 2. Grover, Wiess, Nagel, Oderey, "Industrial Robotics: Technology, Programming and Applications", McGraw Hill, 1986.
- 3. Wolfram Stadler, "Analytical Robotics and Mechatronics", McGraw Hill, 1995.
- 4. Saeed B. Niku, "Introduction to Robotics: Analysis, Systems, Applications", Prentice Hall, 2001.
- 5. K. S. Fu, R. C. Gonzales and C. S. G. Lee, "Robotics", McGraw Hill, 2008.

COUR	SE DESIGNERS			
S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Mr.R.Ezhilan	Assistant Professor	BME	ezhilan@vmkvec.edu.in
2	Dr. M.Ravindiran	Professor & Head	BME	ravindiran@avit.ac.in
3	Mr. S.Kannan	Assistant Professor	BME	kannan@vmkvec.edu.in

COUDCE DECICNEDO

PREAMBLE

This course is designed to enable students to understand the principles of monitoring of respiratory, cardiovascular and other systems of the patients in ICU. Many diagnostic and therapeutic devices such as ventilators, hemodialysis, pacemakers, infusion pumps, and deep-brain or spinal stimulators attempt to augment or, in some cases, replace certain critical physiological functionalities.

PREREQUISITE – NIL	
I KEKEQUISITE – NIL	

1 11111											
COUF	RSE OBJECTIVES										
1	1 To describe the basic principles of monitoring system.										
2	To identify the benefits and risks of ICU monitoring techniques.										
3	To describe the functions of Pacemaker and defibrillator.										
4	To understand the functions of therapeutic equipment.										
5	5 To study ventilators and drug delivery systems.										
COUF	RSE OUTCOMES										
On the	successful completion of the course, students will be able to										
CO1. 0	Deprate the critical care instruments.	Apply									
CO2.	Know how to tackle the critical situation.	Understand									
CO3. /	Apply the diathermy systems.	Apply									
CO4. U	Jse hemodialysis and lithotripter techniques.	Analyze									
CO5. I	Know ventilator and drug delivery systems.	Apply									
	MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME	SPECIFIC OUTCOMES									
COC											

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S		L	L	М		L						М		
CO2	S		М	L	М								М		L
CO3	S		М	L	М		L						М		
CO4	S		М	L	М								М		L
CO5	S		М	L	М								М		
S- Stro	S- Strong: M-Medium: L-Low														

S- Strong; M-Medium; L-Low

SYLLABUS

CRITICAL CARE MONITORING SYSTEM

Objective of critical care monitoring system, cardiac monitor, Bed side monitoring system, Central monitors, Cardiac arrhythmia, Arrhythmia monitor, ST/AR arrhythmia algorithm, Ambulatory monitoring instruments, Fetal monitoring.

CARDIAC PACEMAKER AND DEFIBRILLATOR

Need for pacemaker. External pacemaker, Implantable pacemaker. Types of implantable pacemaker, Pacing modes, ventricular synchronous demand pacemaker, Power sources for implantable pacemaker. Defibrillator- Need for defibrillator, Dc defibrillator, Implantable defibrillator, Pacer – cardioverter defibrillator,

Defibrillator analyser.

ELECTRO THERAPHY AND SURGICAL DIATHERMY

Short wave diathermy, Microwave diathermy, Ultrasonic theraphy Unit, Electrotherapy, Pain Relief through electrical stimulation. Principles of surgical diathermy, Types of electro surgery techniques, Surgical diathermy machine, Coagulation modes, Mono polar and bipolar technique, Electrodes used with surgical diathermy, Surgical diathermy analyzers.

HAEMODIALYSIS AND LITHOTRIPTOR

Function of kidney, Artificial kidney, Types of dialyzers, Performance analysis of dialyzer, Hemodialysis machine, Portable Kidney Machine. Lithotripter- Stone disease problem, First lithotripter machine, Modern lithotripter systems.

VENTILATORS AND DRUG DELIVERY SYSTEMS

Mechanics of Respiration, Ventilators, Ventilator terms, Classification of ventilators, Modern ventilator. Humidifier, Nebulizers and Aspirator. Drug delivery systems- infusion pomp, components of infusion pump, implantable infusion systems, Examples of typical infusion pumps.

TEXT BOOKS:

- 1. Khandpur R.S, **"Hand book of Biomedical Instrumentation"**, Tata McGraw Hill, 2nd Edition, 2003.
- 2. Leslie Cromwell, Fred Weibell J, Erich Pfeiffer. A, **"Biomedical Instrumentation and Measurements"**, Prentice-Hall India, 2nd Edition, 1997.

REFERENCES:

1. Arumugam, M, "Biomedical instrumentation", Anuradha publications, 2008.

COUF	RSE DESIGNERS			
S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr. N.Babu	Professor	BME	babu@vmkvec.edu.in
2	Mrs. R.Indumathi	Assistant Professor (Gr-II)	BME	indhumr@avit.ac.in
3	Mrs.S.Vaishnodevi	Assistant Professor	BME	vaishnodevi@vmkvec.edu.in

BIO TECHNOLOGY -OPEN ELECTIVE

17BT	CC15	FO	OD P	ROCI	ESSIN	IG TI	CHN	NOLO)GY	Cate	egory	L	Т	Р	0	Credit
1701		10		noci	2001			UL		EC	(OE)	3	0	0		3
PREA	AMBL	E														
Food	Proce	ssing	Tech	nology	deal	s wit	h the	stud	ly of	food	produc	ction,	proce	ssing,	pac	ckaging
presei	rvation	and t	he us	e of te	chnol	ogy a	ind E	ngine	ering	technie	ques ir	n aidin	g the	above	-me	entioned
stages	s. It als	o deal	ls witl	n artifi	cial fo	ood, a	rtifici	al edi	ble ite	ems, ni	utritior	scien	ce and	l its C	hem	nistry. I
allow	s stude	ents to) lear	n abou	it foo	d and	l nutr	ients,	role	of fur	nctiona	l food	s and	the s	trate	egies to
produ	ice spe	cific fo	ood in	gredie	nts.											
PREI	RQUIS	SITE -	NIL													
COU	RSE C	BJE	CTIV	ES												
1 To	o expla	in dif	fferent	t types	s of f	oods,	facto	ors af	fectin	g food	1 & fo	ood pr	oduct	s and	the	micro
or	ganism	s whic	ch cau	se foo	d born	e dise	eases									
2 To	o expla	in the	conce	pts of :	food s	poilag	ge and	l diffe	erent f	ood pr	eserva	tion m	ethods	s, and t	hei	r impac
on	the sh	elf life	e, qual	ity, an	d othe	er phy	sical	and se	ensory	chara	cteristi	cs of f	oods			
3 To	o discu	ss the	differe	ent foo	d proc	cessin	g met	hods	and it	s appli	cability	y in fo	od pro	duct p	repa	arations
4 Tc	o choos	e appi	opriat	e mod	ern m	ethod	s of fo	ood pi	reserv	ation f	or indu	striali	zation			
5 To	o Choo	se the	mater	ials an	d type	s of p	ackag	ging f	or foo	ds and	its qua	ality te	sting			
COU	RSE C	UTC	OME	S												
On th	e succe	essful	compl	etion of	of the	cours	e, stud	lents	will b	e able	to					
CO1.	Identi	fy dif	fferen	t micr	obes	assoc	iated	with	food	s, and	food	borne	Unc	lerstan	d	
diseas	ses.															
CO2.	Descri	be the	role	of micr	obes i	n foo	d spo	ilage	and fo	od pre	servati	on	Unc	lerstan	d	
CO3.	Summ	arize a	all foo	d proc	essing	g meth	nods a	nd de	mons	trate its	s appli	cation	Unc	lerstan	d	
in foo	od prod	uct pro	eparat	ion	-											
CO4.	Illustra	ate the	mode	ern me	thods	to mo	dify f	oods	using	biotec	hnolog	y.	App	oly		
CO5.	Demo	nstrate	pack	ing me	thods	, mate	rials	and fa	ctors	affecti	ng foo	d	App			
packi			-	-							-			•		
MAP	PING	WITI	H PRO	OGRA	MMI	EOU	ТСО	MES	AND	PRO	GRAM	IME S	PEC	FIC		
OUT	COMI	ES														
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO	2	PSO3
CO1	L	М	L	М	L	М	L	-	-	-	-	-	-	-		-
CO2	Ĺ	S	L	М	L	L	L	-	-	-	-	-	-	-		-
CO3	S	M S	M	L	M	M	M	-	-	-	-	-	М	- M		- M
CO4 CO5	M S	S M	S M	S M	S M	M L	L M	-	-	-	-	-	-	M	\dashv	M -
	ong; N					Ъ	171									
<u>ə- əu</u>	ong, N		iuiii, I	L-LOW												

SYLLABUS

FUNDAMENTALS OF FOOD MICROBIOLOGY

Microbiology of different types of foods-Vegetables, fruits, milk and milk products, meat and meat products. Factors affecting the food products. Food borne diseases and causative organisms.

FOOD SPOILAGE AND PRESERVATION

Spoilage of foods and Shelf -life-Milk and milk products, meat and meat products. Factors influencing food spoilage. Methods of food preservation-Pickling, salting, drying, freezing, refrigeration, use of food additives and irradiation.

PROCESSING OF FOODS

Heating, boiling, oxidation, toxic inhibition, dehydration, drying-Yeast based products, Milk products, Jams and jellies, Pickles, Meat and meat products. Labelling Instructions.

INDUSTRIALIZATION/ MODERN FOOD PRESEVERVATION

Pasteurization, Vacuum packing, food additives, irradiation, bio preservation, Modified atmosphere packing, cryopreservation.

PACKAGING AND QUALITY TESTING

Methods of packaging of foods-Solid, liquid, semi solids, Modified atmosphere packing. Factors affecting packaging. Packaging materials.

TEXT BOOKS

1. Frazier. Food Microbiology. McGraw Hill Publication.4th Edition.2001

2. Sivashankar.B.Food processing Preservation, Prenlice Hall of India.Pvt.Ltd.2002

REFERENCE BOOKS

1. James M Jay, Martin J, Loessner and David A Golden. Food Microbiology, Springer Publication, 7th Edition. 2005

2. Shetty K, Paliyath, Food Microbiology, 2nd Edition, Taylor and Francis, 2006

COURSE DESIGNERS										
S.No.	Name of the Faculty	Designation	Department	Mail ID						
1	Mrs.C.Nirmala	Assistant Professor	Biotechnology	nirmala@vmkvec.edu.in						
2	Dr.M.Sridevi	Professor& Head	Biotechnology	sridevi@vmkvec.edu.in						

17DTEC24 BIOFEDTH IZED TECHNOLOGY	TEC24 PLOFEDTH LZED TECHNOLOCY Category L T									
17BTEC24BIOFERTILIZER TECHNOLOGY	EC(OE)) 3	0	0	3					
PREAMBLE										
This course will provide knowledge of comprehensive und	lerstanding	of the bi	ofertiliz	er tech	nology and					
its current trends. It develops the entrepreneurship to catch	with the cu	urrent trei	nds as w	ell as c	creating the					
industry ready professionals.										
PREREQUISITE - NIL										
COURSE OBJECTIVES										
¹ To state the basic knowledge on biofertilizer in ag	riculture.									
2 To discuss about the role of biofertilizer in crop pr										
³ To implement the production and application of bi		echnolog	y							
⁴ To outline the marketing strategies of biofertilizer			·							
COURSE OUTCOMES										
After the successful completion of the course, learner will	be able to									
CO1. Recall the types and importance of biofertilizer.				Rem	ember					
CO2. Describe in detail about the different chemical fertiliz	er, green m	nanuring a	nd its	Und	erstand					
role in crop production										
CO3. Illustrate the functions of microorganism from variou	s sources a	nd their n	nass	App	ly					
production										
CO4. Appraise in detail about the application and limitation	n of bioferti	ilizer in c	op	Ana	lyze					
field CO5. Estimate the promotion and strategies improvement i	n distributio	on austom		Eval	uoto					
CO3. Estimate the promotion and strategies improvement i	ii aisuibuud	on system	•	Eva	uale					
MAPPING WITH PROGRAMME OUTCOMES AND	PROGRA	MME SF	ECIFI	C OUT	COMES					
COS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9	9 PO10 P	PO11 PO1	2 PSO1	PSO	2 PSO3					
CO1 M L - L - L	-	L L	-	L	-					
CO2 S M S S	-	L L	L	L	-					
CO3 M - M M M		L -	-	-	-					
CO4 L L S			-	-	-					
CO5 S M L L -	-	L S	-	М	-					
S- Strong, M-Medium, L-Low										

SYLLABUS BIOFERTILIZER

Definition and types, importance of biofertlizers in agriculture, Characteristics of biofertilizers-*Rhizobium, Azotobactor, Azospirillum*, Phosphate solubilizing microorganisms, cyanobacteria, *Azolla*, Mycorrhizae. Symbiosis- Physiology, biochemistry and molecular genetics of symbiosis, Enzymes and their regulation: Nitrogenase, hydrogenase

BIOFERTILIZER AND ITS ROLE IN CROP PRODUCTION SYSTEM

Different chemical fertilizer, its function and effect on agriculture. Role of organic matter on crop

production and soil health. Various type of bio-inocula and techniques application and keep soil environment free from pollution. Green manuring, its sources, use and role in cropping system.

FUNCTION AND MASS SCALE PRODUCTION

Total and differential count of microorganisms from soil, water and carrier material. Nitrogen cycle andnitrogen fixation technology. Isolation, purification, screening, selection, mass scale production and preservation of *Rhizobia/Bradyrhizobia*, *Azotobacter*, *Azospirillum*, PSB and KSB. General biology, function, use and important of green manuring, particularly Sesbania and Azolla.

APPLICATION TECHNOLOGY

Strain selection, sterilization, growth and fermentation, mass production of various biofertilizers. Application technology: Standards and quality control, application for field and tree crops, nursery plants and seedlings. Limitation of bio-fertilizer and bio-pesticide application in agriculture.

EXTENSION, PROMOTION AND MARKETING

Extension strategies, diagnosis for the effectiveness of inoculation, improvement in distribution system.

TEXT BOOKS:

- 1. Dr. HLS Tomdon, Fertilizers, organic manures, recyclable water and biofertilizer, Fertilizer development and consultation organization 204-204 A New Delhi.
- 2. S.L. Tisdale, J.D. Beaton, W.L. Nelson, J.L. Havling, Soil fertility and fertilizers, fifth edition, Mc millan publishing company 866 third avenue new yark.
- 3. R. Serraj, Symbiotic nitrogen fixation prospects for enhanced application in tropical agriculture, Oxford & IBH publishing Co Pvt. Ltd New Delhi.

REFERENCES:

- 1. HLS. Tandan, Biofertilizer technology marketing and uses, Fertilizer development.
- 2. N.S. Subba Rao, Biofertilizer in Agriculture, Oxford & IBH Publishing co.pot ltd.

COUR	SE DESIGNERS			
S.No.	Name of the Faculty	Designation	Department	Mail ID
1	R. Deepa Priya	Assistant professor	Biotechnology	deepapriya.biotech@avit.ac.in
2	Dr M.Sridevi	Professor & Head	Biotechnology	sridevi@vkvec.edu.in

	~ ~ ~ ~									Cat	egory	L	Т	Р	Credit
17B'I	FEC25		BIOL	OGY	FOR	NON	BIO	LOGI	STS	EC	(OE)	3	0	0	3
PREAM	MBLE	•											•		
The pu	rpose o	of thi	s cour	se is	to pr	ovide	a ba	sic un	derstan	ding	of biolo	gical 1	mecha	nisms	of living
organis	ms fro	om th	e per	specti	ve of	engi	neers.	. In a	dditior	n, the	course	is ex	pecte	d to e	encourage
enginee	ring stu	udents	s to thi	nk ab	out so	lving	biolog	gical p	roblem	s with	enginee	ering to	ools.		
PRERI	EQUIS	ITE -	NIL												
COUR	SE OB	JEC	FIVES	5											
1	To lis	t out	the stu	idents	with	the b	asic o	organiz	ation c	of orga	anisms a	and sub	oseque	ent bui	ding to a
	living	being	5					•		-			-		-
2				oout t	he m	achine	ery of	f the c	cell fui	nction	s that i	s ultin	nately	respon	nsible for
			ly activ				-						5	I	
3	To im	plem	ent the	e knov	vledg	e aboi	ut bio	logical	l probl	ems th	nat requ	ires en	ginee	ring ex	pertise to
	solve	•			U			0	1		1		0	0	L
COUR															
After th	e succe	essful	comp	letion	of the	cours	se, lea	rner w	ill be a	ble to					
CO1: R	ecall th	ne stru	icture	and ce	ell the	ory of	living	g orgar	nism.					Reme	mber
CO2: D	iscuss	about	the bi	ologic	al div	ersity	of lif	e.						Under	rstand
CO3: C	lassify	the aj	pplicat	ion of	enzy	mes ir	n indu	strial l	evel.					Apply	7
CO4: D	etect th	ne use	s of B	iorem	ediatio	on and	l Bios	ensors	using	molec	ular ma	chines.		Analy	se
CO5: A immune			etail ab	out th	e prir	ciples	s of ce	ell sign	alling i	in nerv	ous sys	tem an	d	Evalu	ate
MAPP	ING W	/ITH	PRO	GRAN	IME	OUT	COM	ES AN	ND PR	OGR	AMME	SPEC	CIFIC	OUT	COMES
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO11	PO12	PSO	PSO2	PSO3
CO1	М	-	-	-	-	-	-	-	-	-	-	L	L	L	-
CO2	S	М	S	-	-	М	S	-	L	L	-	L	L	L	-
CO3	-	L	М	-	L	S	М	-	М	М	L	L	М	L	L
CO4	L	L	L	L	-	L	S	М	S	L	-	М	L	М	М
CO5	S	M	L	L	-	-	-	-	-	S	L	S	S	М	L
S- Stron	1g; М-Г	viediu	ım; L-	LOW											

т

SYLLABUS

INTRODUCTION TO BIOLOGY – CELL AND CELL STRUCTURE AND FUNCTION

Introduction, Scope, Disciplines of biology -An over View of plants, animal, Microorganism.

INTRODUTION TO BIOLOGY – BIO CHEMISTRY, ENZYME, INDUSTRIAL USE

Prokaryotes – Eukaryotes, Cell, Cell structure, Organelles and their functions, Yeast, Bacteria –Friends and Foe.

FOOD DIET NUTRITION

Major constituents of food – carbohydrate, protein, lipids, vitamins and minerals. Balanced diet-BI-Junk food, Fermented food, nutritional values.

ENVIRONMENT

Clean environment-Reduce, Recycle and Reuse-Renewable energy-Waste management –water-waste water management – personal hygiene, Global Climatic Changes -Tsunami, global warming, storms, vardha, Okhi. Recycled products -Paper, No to plastic, go green.

HEALTH, IMMUNE SYSTEM AND MEDICINE

Immunology- Blood Grouping – Antigen- Antibody. Antibiotics, Vaccines their significance. Diagnosis –Parameters in Urine and Blood. Instruments – ECG, ECHO, MRI, X-ray. Prophylaxis, Chemotherapy and Allergy.

TEXT BOOKS:

- 1. J.M.Berg, J.L.Tymosczko and L.Sryer. Biochemistry, W.H Freeman publication.
- 2. Student Companion to accompany Biochemistry, Fifth Edition-Richard I. Gum port.
- 3. Frank H.Deis, Nancy Count Gerber, Roger E.Koeppe, 2 Molecular motors

REFERENCE BOOKS:

- 1. Albert's, 2003, Molecular Biology of the cell
- 2. Lodish, 2004, Molecular cell Biology

COURSE DESIGNERS

S.No	Name of the Faculty	Designation	Department	Mail ID
1	Dr. R. Deepapriya	Assistant Professor	Biotechnology	deepapriya21@gmail.com
2	Dr M.Sridevi	Professor & Head	Biotechnology	sridevi@vkvec.edu.in

											Categ	gory	L	Т	Р	Credit
17E	BTEC30		NATU	RAL	RESO	JURG	CES N	AANA	AGEM	ENT	EC(0	DE)	3	0	0	3
PREA	MBLE															
Biores	source n	nanage	ement	show	ers the	e knov	wledg	e on i	mporta	nce of	variou	s resour	ce a	availat	ole in the	he world
and its	s econor	nic im	portar	nce. St	tudent	s will	gain	the kr	nowledg	ge in v	vide sp	ectrum o	of bi	oresou	arce av	ailability
and it	s culturi	ng me	ethod.	This	pape	r also	deals	with	the co	nserva	tion of	wild re	sou	rce an	d cultiv	vation of
valuat	ole produ	ucts fo	r the s	ophis	ticatic	on of h	uman	life.								
PREF	REQUIS	SITE -	NIL													
COU	RSE OF	JEC 1	TVES	5												
1	To stat	e abou	it the l	kinds a	and in	nporta	nce o	f biore	esource	mana	gement	•				
2	To des	cribe a	bout t	he va	rious	ypes	of aqu	iaculti	are and	its bre	eding t	ypes.				
3	To con	struct	the ch	aracte	eristic	s of ve	ermicu	ulture	and its	scope	and im	portance	e.			
4	To cate	egorise	e and p	oreser	ve the	affor	estatio	on pro	cess wi	ith cert	ain cor	servatio	on po	olicies	•	
5	To dev	elop tl	he eco	nomic	e impo	ortanc	e of v	alue-a	dded p	roduct	s.					
COU	RSE OU	JTCO	MES													
After	the succ	essful	comp	letion	of the	cours	se, lea	rner v	vill be a	able to						
CO1.	Recogni	ze the	basic	conce	epts ar	ıd imp	ortan	ce of]	Bioresc	ource n	nanage	ment		Ren	nembei	•
CO2.	Explain	the cu	lturing	g proc	ess an	d vari	ous ty	ypes o	f aquac	culture	•			Unc	derstand	1
CO3.	Demons	trate t	he sco	pe and	d ecor	omic	impo	rtance	of veri	micult	ure and	sericult	ure.	Unc	lerstan	1
CO4.	Develop	the st	rategi	es on	conse	rvatio	n and	mana	gement	t of for	est reso	ource.		Ana	alyze	
CO5.	Measure	e the ci	rop im	prove	ment	techn	ologie	es in th	ne prod	uction	of bior	esource		Ana	alyze	
produ	cts.															
MAP	PING V	VITH	PRO	GRAN	ИМЕ	OUT	COM	ES A	ND PR	ROGR	AMM	E SPEC	IFI	C OU'	тсом	IES
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		PSO1	PSO2	PSO3
CO1	L	-	L	L	-	-	L	-	-	-	-	М		L	L	-
CO2	L	-	Μ	L	L	-	М	-	S	-	L	М		S	М	М
CO3	S	S	-	-	_	-	Μ	L	_	-	L	_		-	L	-
CO4	L	-	L	L	-	L	S	L	-	-	-	-		-	-	L
CO5	L	L	-	L	-	-	L	-	-	-	-	S		Μ	L	М
S- Str	ong; M-	Mediu	m; L-	Low												
SYLL	ABUS															

BASICS OF BIORESOURCE MANAGEMENT

Basics of Bioresources - Concept, kinds, importance. Human Resource: Management, scope and importance of human resource management (HRM) and personnel management; human development index (HDI). Animal Resources Conservation and Management: Concept on livestock and livestock production

management; role in livelihood and nutritional securities; sustainable livestock production, problems and opportunities

AQUACULTURE

Introduction to aquaculture; Prawn culture, Methods of prawn fishing, Preservation and processing of prawn; Pearl culture and status of pearl culture in India; Economically important of fishes. Setting up of a fish farm, Monoculture and composite fish culture, Bundh breeding, Induced breeding, methods of fishing, Fish preservation and processing; Identification of fish diseases and their control.

VERIMICULTURE AND SERICULTURE

Introduction and scope, Species of earthworm, Characteristics features of earthworm. Overview of methods of vermicomposting, Role of earthworm in solid waste management. Vermiwash- its importance, Vermicompost as bio-fertilizer. Overview of scope, economic importance and the product of Sericulture.

FOREST MANAGEMENT AND PLANTS CULTIVATION

Classification and distribution of forests, current strategies of conservation and management of forest resource; agro-forestry, social forestry; Joint Forest Management; National Forest Policy; Forest (conservation) Act, 1980. A brief account of Harlan and Hawkes theories; practices of floriculture, agroforestry, BT crops (brief account).

VALUE ADDED BIORESOURCE PRODUCTS

Economic uses of important cereals, legumes (pulses and fodders), fruits and vegetables, spices and condiments, beverages, oils and fats, essential oils, medicinal plants, hallucinogens (psychotropic drugs), timber plants, fibre plants, natural rubber, resins, raw materials for paper. A brief account of crop improvement technologies, biosafety considerations, natural products.

TEXT BOOKS:

- 1. Manju Yadav. 2010. "Economic Zoology" Discovery publishing housePvt.Ltd., New Delhi
- 2. Trivedi, T, R. (2011) "Forest Management" Discovery Publishing Pvt.Ltd. New Delhi
- Milton Fingerman, RachakondaNagabhushanam 2000. "Recent Advances in Marine Biotechnology" IstEdition Science Pub Inc.

REFERENCES:

1. Peter Bettinger Kevin Boston Jacek Siry Donald Grebner 2017. Forest Management and Planning 2nd Edition. Academic press.

COUR	SE DESIGNERS			
S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr.Chozhavendhan. S	Associate professor	Biotechnology	chozhavendhan@avit.ac.in
2	Mrs.R.Subashini	Assistant Professor	Biotechnology	subashini@vmkvec.edu.in

17BTEC31	APPLICATIONS OF ENZYME IN WASTE	Category	L	Т	Р	Credit
IIDILCJI	MANAGEMENT	EC(OE)	3	0	0	3

PREAMBLE

This course explains about different waste generation in environment, management of waste, general characters of enzymes, their immobilization process, makes an attempt to bring students in direct contact with nature, to find the environmental problems and possible solutions. To empower the students to enrich their knowledge on waste treatment using biocatalyst to solve the environmental pollution.

PREREQUISITE - NIL
COURSE OBJECTIVES
1 To state the basic knowledge on different wastes
2 To discuss about the waste management methods
³ To perform the waste treatment using enzymes
4 To implement the basics of enzyme immobilization process
⁵ Tooutline the students to basic knowledge concerning biodegradation with the usage of enzymes
COURSE OUTCOMES
After the successful completion of the course, learner will be able to
CO1. List and classify the different wastes in environment Remember
CO2. Describe about the general waste management methods Understand
CO3. Illustrate the waste treatment using enzymes Apply
CO4. Demonstrate the basics of enzyme immobilization process Apply
CO5.Appraise different method of biodegradation of waste using enzymes Analyse
MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES
COS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 P PO11 PO12 PS PSO PSO3
CO1 L
CO2 M M
CO3 M M - L L L
CO4 M M S - L M -
CO5 M M L L S S - L L L
S- Strong; M-Medium; L-Low

SYLLABUS

CLASSIFICATION AND TECHNOLOGIES IN REDUCING WASTE

Definition of waste, and its classification, Waste treatment technologies including waste incineration and energy from waste, advanced conversion technologies of pyrolysis and gasification, anaerobic digestion, composting and biological treatment of wastes.

WASTE AND RESOURCE MANAGEMENT

3 RS, Advances in waste recycling and recovery technologies to deliver added value products; Landfill

engineering, Sustainability and resource efficiency with consideration for materials flow through the economy, steps towards designing out waste and maximizing the value of outputs from waste treatment processes.

ENZYME IN WASTE TREATMENT

Enzymes in enhanced oil recovery; treatment of wastewater of brewery, pharmaceutical, textile dyeing, metal processing, petrochemical, pulp and paper industry; role of natural/stimulated, dead/spent microbial cultures, GMOs, phytoremediation. Biological indicators of waste by enzyme.

ENZYME ACTION AND IMMOBILIZATION

Action of enzyme on xenobiotic compound, phenolic compounds, pesticides (organo chlorinated, organo phosphorous and carbonated) immobilization techniques.

BIOSENSOR AND OPTICAL INSTRUMENTS

Birth of biosensors, advantages and disadvantages, construction of biosensors- enzyme and microbial biosensor. Transducers- piezoelectric, potentiometric, amperometric and fiber optics.

TEXTBOOKS:

- 1. Instant Notes in Ecology by A. Mackenzie, A.S. Ball and S.R. Virdee, Bios Scientific Publishers Ltd., UK, 1999.
- 2. Biotechnology-Applications to Environmental Protection by M.M. Pandey, Himalaya Publishing House, 1993.
- 3. Pesticide Properties in the Environment by A.G. Hornsky, R.D. Wauchope and A.E. Herner, Springer-Verlag, New York Inc., 1996.
- 4. Basic Environmental Science by G.S.P. Iyer, Educational Publishers and Distributers, New Delhi, 1997.

REFERENCES:

- 1. Popular Biotechnology Lecture Series Focus: Bioremediation by Division of Biotechnology, PSCST, 2013.
- 2. Pesticide Properties in the Environment by A.G. Hornsky, R.D. Wauchope and A.E. Herner, Springer-Verlag, New York Inc., 1996.
- 3. Introduction to Environmental Technology by A.K. Chatterji, Prentice Hall of India Pvt. Ltd., New Delhi, 2002.

COUR	RSE DESIGNERS			
S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr. A. Nirmala	Assistant professor (Gr-II)	Biotechnology	nimmi_aruna@yahoo.co m
2	Ms.R.Subashini	Assistant Professor	Biotechnology	subashini@vmkvec.ac.in

CIVIL ENGINEERING -OPEN ELECTIVE

17CVSE28	URBAN TRANSPORTATION INFRASTRUCTURE– PLANNING AND DESIGN	Category EC(OE)	L 3	Т 0	P 0	Credit 3
PREAMBLE						
Helps in Design	n of Intersections, Interchanges, Parking and Termin	al Facilities	to be p	ovided ir	nan urba	an area
PREREQUIS	TE					
NIL						
COURSE OB,	JECTIVES					
1 Helps urban a	in Design of Intersections, Interchanges, Parking and rea	l Terminal I	Facilities	to be pr	ovided	inan
2 The stu	udents would have gained knowledge on Rail Infrast	ructure Man	agement			
3 The stu	udents would have gained knowledge on Design of C	Grade Separa	tors and	intersect	ions	
4 The stu	dents would have gained knowledge on Design of M	Iulti-Storey	and Surf	ace Parki	ng facil	ity
5 The stu Facilitie	dents would have gained knowledge on Design and es	Case Studies	s of Inter	Modal T	ransfer	
COURSE OU	ГСОМЕЅ					
On the success	ful completion of the course, students will be able to					
CO1. The stude Operation and I	ents would have gained knowledge on Rail Infrastruc Management.	cture Plannir	ıg,	Apply		
CO2. The stude	ents would have gained knowledge on Rail Infrastruc	cture Manag	ement.	Unders	tand	
CO3. The stude intersections	ents would have gained knowledge on Design of Gra	de Separator	rs and	Apply		
CO4. The stude Surface Parking	ents would have gained knowledge on Design of Mu g facility	lti Storied ar	nd	Apply		
CO5. The stude Modal Transfer	ents would have gained knowledge on Design and Ca Facilities	ase Studies o	of Inter	Apply		
MAPPING W	ITH PROGRAMME OUTCOMES AND PROGR	RAMME SF	PECIFIC	COUTCO	OMES	

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PS	PSO3
														02	
CO1	S	М	L	-	-	-	-	-	-	-	-	-			
CO2	S	-	L	S	-	-	-	-	-	-	-	-			
CO3	S	-	М	S	-	-	-	-	-	-	-	-			
CO4	S	М	-	-	-	-	-	-	-	-	-	-			
CO5	S	М	М	-	-	-	-	-	-	-	-	L			
S- Stro	ong; M	Mediu	m; L-I	LOW			•	•	•	•		•			

SYLLABUS

PRINCIPLES OF INTERSECTION DESIGN: Basic considerations – simplicity – uniformity – Manoeuvre Elements – Separation of conflict points – Design Elements – Design Speed – Intersection Curves – Super elevation for curves at Intersection – Intersection Sight Distance

DESIGN OF AT-GRADE INTERSECTIONS: Capacity and LOS, Design of Rotary and Signalised Intersections, Vehicle Actuated Signals, Signal Co-ordination, Area Traffic Control System (ATCS), Pedestrian Planning at Grade Intersections

DESIGN OF GRADE SEPARATED INTERSECTIONS: Design of Grade Separators – Principles, Design Criteria – Layout Design, GAD Preparation – Pedestrian Foot Over-bridge and Subway Design – Pedestrian Planning for Grade Separated Intersections

PARKING FACILITIES : Parking – Demand – Characteristics – Space Inventory – Accumulation – Duration – Turn over – Index – Design of Multi Storey and Surface Parking facility

DESIGN OF TERMINAL FACILITIES: Bus Terminus – Design Principles – Design Elements – Design and Case Studies of Inter Modal Transfer Facilities – Design – Case Studies of Bus and Rail Terminals.

TEXT BOOKS:

- 1. Robert F Baker, (Edition) "Hand Book of Highway Engineering, Van Nostrand Reinhold Company, New York, 1975
- 2. Kanna, S.K. and Justo, C.E.G. "Highway Engineering, Nemchand.

REFERENCES:

1 .New Jersy, "Transportation and Traffic Engineering Hand Book, Institute of Transportation Engineers, Prentice Hall, INC, 1982

COURS	E DESIGNERS			
S.No	Name of the Faculty	Designation	Name of the College	Mail ID
1	S. Arvindan	Asst.Prof	AVIT	arvindsivasuriyan@avit.ac.in
2	Dr. D. S. Vijayan	Asso.Prof	AVIT	vijayan@avit.ac.in

2To matrix3To matrix4To5ToCOURSEOn the succonstructionCO1. UnderCO2. RemCO3. Under	the stuprinciple quality JISITE OBJEC Study ab learn ab understa nagemer learn ab know ab OUTCC	es of tot assuran - NIL TIVES oout the out the out the out the oout the oout the DMES ompleti	to under tal qual nee and concept elemer ut the c iques. quality benefi	lity man l benef l benef pt of qu nts and custome ts of co he cour	about t nagem its of c its of c jality, j benefi er satis	the qua ent, cu control plannin ts of to faction quality charts a	stomer i charts a ng and q otal qual n measu assuran and appl	relatio and app quality lity ma remen nce licatio	and ma anageme t technic	g, and nanage ns rket s	hare	echniq	ues, q	uality
To introdu real estate, control and PREREQ COURSE 1 To 2 To 3 To ma 4 To 5 To COURSE On the suc CO1. Unde CO2. Rem	the stuprinciple quality JISITE OBJEC Study ab learn ab understa nagemer learn ab know ab OUTCC	es of tot assuran - NIL TIVES oout the out the out the out the oout the oout the DMES ompleti	tal qual nce and concept element ut the c iques. quality benefit	lity man l benef l benef pt of qu nts and custome ts of co he cour	nagem its of c uality, j benefi er satis	plannin ts of to faction quality charts a	stomer i charts a ng and q otal qual n measu assuran and appl	relatio and app quality lity ma remen nce licatio	and ma anageme t technic	nanage ns rket si ent	hare	echniq	ues, q	uality
real estate, control and PREREQ COURSE 1 To 2 To 3 To 3 To 3 To 3 To 6 COURSE On the suc CO1. Unde CO2. Rem CO3. Unde	principle quality JISITE OBJEC study ab learn ab understa nagemer learn ab know ab OUTCC	es of tot assuran - NIL TIVES oout the out the out the out the oout the oout the DMES ompleti	tal qual nce and concept element ut the c iques. quality benefit	lity man l benef l benef pt of qu nts and custome ts of co he cour	nagem its of c uality, j benefi er satis	plannin ts of to faction quality charts a	stomer i charts a ng and q otal qual n measu assuran and appl	relatio and app quality lity ma remen nce licatio	and ma anageme t technic	nanage ns rket si ent	hare	echniq	ues, q	uality
COURSE1To2To3To4To5ToCOURSEOn the sucCO1. UnderCO2. RemCO3. Under	OBJEC study ab learn ab understa nagemer learn ab know ab OUTCC	TIVES oout the out the and about the christ out the pout the DMES ompleti	e concep elemer ut the c iques. quality benefi	ts of control he cour	benefi er satis ol and c	ts of to faction quality charts a	otal qual n measu assuran	lity ma remen nce	t technie ns	ent		iomer 1	relatio	onship
2To matchedding3To matchedding4To5ToCOURSEOn the succonditionCO1. UnderCO2. RemCO3. Under	learn ab understa nagemer learn ab know ab OUTCC	out the and about techn out the pout the DMES ompleti	elemer ut the c iques. quality benefi	ts of control he cour	benefi er satis ol and c	ts of to faction quality charts a	otal qual n measu assuran	lity ma remen nce	t technie ns	ent		omer 1	relatio	onship
2To matchedding3To matchedding4To5ToCOURSEOn the succCO1. UnderCO2. RemCO3. Under	learn ab understa nagemer learn ab know ab OUTCC	out the and about techn out the pout the DMES ompleti	elemer ut the c iques. quality benefi	ts of control he cour	benefi er satis ol and c	ts of to faction quality charts a	otal qual n measu assuran	lity ma remen nce	t technie ns	ent		iomer 1	relatio	onship
3To ma4To5ToCOURSEOn the sucCO1. UnderCO2. RemCO3. Under	understa nagemer learn ab know ab OUTCC cessful co	and aborn t techn out the pout the DMES ompleti	ut the c iques. quality benefi	custome contro ts of co he cour	er satis	faction quality charts a	a measuran assuran	remen	t technid		and cust		relatio	onship
5 To COURSE On the suc CO1. Unde CO2. Rem CO3. Unde	know ab OUTCC cessful co	oout the DMES ompleti	benefi	ts of co	ontrol	charts a	and app	lication						
COURSE On the suc CO1. Unde CO2. Rem CO3. Unde	OUTCC	OMES ompleti	ion of t	he cou										
On the suc CO1. Unde CO2. Rem CO3. Unde	cessful c	ompleti			rse, stu	Idents	will be a	able to)					
CO1. Unde CO2. Rem CO3. Unde		Ĩ			rse, stu	idents	will be a	able to)					
CO2. Rem CO3. Unde	retand th	ne conc	ont of a											
CO3. Unde	istanu li		cpior	quality,	, plann	ing and	d quality	y and r	narket s	hare		Und	lerstan	nd
CO3. Unde	ember th	e eleme	ents and	d benef	fits of t	total qu	ality ma	anager	ment			Ren	nembe	er
										istom				
renationsin	o manage					asuicii		linque		18101110		Und	lerstan	nd
CO4. Ren	ember tł	ne quali	ity cont	trol and	l qualit	ty assu	rance					Ren	nembe	er
CO5. Und	erstand t	he bene	efits of	control	l charts	s and a	pplicati	ons				Und	lerstan	nd
MAPPIN	WITH	PROC	GRAM	ME O	UTCO	MES	AND P	ROGI	RAMM	E SPI	ECIFIC	L C OUT	ΓΟΟΝ	1ES
COS PC	1 PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO 11	PO1 2	PS O1	PS O2	PSO3
CO1 S			1	I I		1				11	4		1	1

			L	S	-	-	-	-	-	-	-	-		l
CO3 S	S N	М	М	S	-	-	-	-	-	-	-	-		
CO4 S	S N	M	М	М	-	-	-	-	-	-	-	-		
CO5 S	S N	M	М	-	-	-	-	-	-	-	-	L		

S- Strong; M-Medium; L-Low

SYLLABUS

QUALITY, STRATEGIC PLANNING, AND COMPETITIVE ADVANTAGE: Brief History - Definitions of Quality. Quality in Manufacturing and Service Systems. Quality and Price - Quality and Market Share - Quality and Cost - Quality & Competitive Advantage.

PRINCIPLES OF TOTAL QUALITY MANAGEMENT: Introduction - Elements of Total Quality Management - Malcolm Baldrige National Quality Award Criteria. Benefits of Total Quality Management. The Deming Management Philosophy – The Juran Philosophy – The Crosby Philosophy.

CUSTOMER FOCUS: The Customer-Driven Quality Cycle - Quality Function Deployment –Customer Satisfaction Measurement Techniques – Customer Relationship Management Techniques.

QUALITY CONTROL AND QUALITY ASSURANCE Concept of Quality Control – Concept of Process Variation – Acceptance Sampling – Sampling Inspection Vs. 100% Inspection – Attributes and variable sampling plans – OC Curves – Producer and Consumer Risk – AQL, RQL, TQL, AOQL and AOL. (10%)

STATISTICAL PROCESS CONTROL : Control Charts – X-R, P, np and C Charts – Benefits of Control Charts and Applications

TEXT BOOKS:

- 1. Quality Control Dale H Besterfield Pearson Education
- 2. Total Quality Management S. Sundarrajan
- 3. Quality Control & Total Quality Management Jain

REFERENCES:

- 1. The essence of Total Quality Management Hansen & Ghare
- 2. Managing for Total Quality Logothetic
- 3. Quality Problem Solving Smith

4. ISO 9000 – Kairon

5. Manuals of various standards

COURSE DESIGNERS

S.No	Name of the Faculty	Designation	Name of the College	Mail ID
1.	Dr.S.P.Sangeetha	HOD-Civil	AVIT	sangeetha@avit.ac.in
2.	Mrs.Vaidevi	AP Fr II	AVIT	vaidevic@ avit.ac.in

17CVSE41		Category	L	Т	Р	Credit
1/CV5E41	INFRASTRUCTURE PROJECT DEVELOPMENT	EC(OE)	3	0	0	3

PREAMBLE

To study the elements of construction planning and scheduling and to apply appropriate tools and techniques like networks and coding systems. To study the elements of quality control and safety of construction projects. To study the monitoring of projects through cost control.

PREREQUISITE

Nil.

COURSE OBJECTIVES 1 To study about the Concepts environment relationship with focus on issues of population 2 To learn about the Application of ecological principles in sustainability. 3 To study about the Land capability and suitability analysis in location and planning of urban. 4 To gain the knowledge about Urban interference in hydrological cycle. 5 To study about the Concepts of effects of air pollution and solid wasted is posalin cavities. COURSE OUTCOMES On the successful completion of the course, students will be able to CO1. Understand infrastructure organizations Apply CO2. Prepare infrastructure master plan Analyze CO3. Schedule infrastructure project activities Analyze
1 Image: Constraint of the second
2 3 To study about the Land capability and suitability analysis in location and planning of urban. 4 To gain the knowledge about Urban interference in hydrological cycle. 5 To study about the Concepts of effects of air pollution and solid wasted is posalin cavities. COURSE OUTCOMES On the successful completion of the course, students will be able to CO1. Understand infrastructure organizations Apply CO2. Prepare infrastructure master plan Analyze
3 To gain the knowledge about Urban interference in hydrological cycle. 4 To study about the Concepts of effects of air pollution and solid wasted is posalin cavities. 5 To study about the Concepts of effects of air pollution and solid wasted is posalin cavities. COURSE OUTCOMES On the successful completion of the course, students will be able to CO1. Understand infrastructure organizations Apply CO2. Prepare infrastructure master plan Analyze
4 1
S I I I COURSE OUTCOMES I I I On the successful completion of the course, students will be able to I I CO1. Understand infrastructure organizations Apply I CO2. Prepare infrastructure master plan Analyze I
On the successful completion of the course, students will be able to CO1. Understand infrastructure organizations Apply CO2. Prepare infrastructure master plan Analyze
CO1. Understand infrastructure organizations Apply CO2. Prepare infrastructure master plan Analyze
CO2. Prepare infrastructure master plan Analyze
CO3. Schedule infrastructure project activities Analyze
CO4. Prepare project development plan Apply
CO5. Prepare tender documents for infrastructure project contract Analyze
MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES
COS PO PO PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3
CO1 S M L
CO2 S M L S

CO3	S	М	М	S	-	-	-	-	-	-	-	-		
CO4	S	М	М	М	-	-	-	-	-	-	-	-		
CO5	S	М	М	-	-	-	-	-	-	-	-	L		
S Stre	S- Strong: M-Medium: I -I ow													

S- Strong; M-Medium; L-Low

SYLLABUS

INFRASTRUCTURE: Definitions of infrastructure, Governing Features, Historical overview of Infrastructure development in India, Infrastructure Organizations & Systems.

INFRASTRUCTURE PLANNING: Typical infrastructure planning steps, Planning and appraisal of major infrastructure projects, Screening of project ideas, Life cycle analysis, Multi-criteria analysis for comparison of infrastructure alternatives, Procurement strategies, Scheduling and management of planning activities, Infrastructure Project Budgeting and Funding, Regulatory Framework, Sources of Funding.

PROJECT MANAGEMENT IN CONSTRUCTION: Introduction to project management processes - Initiating, Planning, Executing, Controlling, and Closing processes; Project Integration Management - Project plan development, Project plan execution, and Overall change control; Project Scope Management - Initiation, Scope planning, Scope definition, Scope verification, and Scope change control.

CONTRACTS AND MANAGEMENT OF CONTRACTS: Engineering contracts and its formulation, Definition and essentials of a contract, Indian Contract Act 1872, types of contracts and clauses for contracts, Preparation of tender documents, Issues related to tendering process, Awarding contract.

AIR QUALITY & SOLID WASTE MANAGEMENT: Sources, types and effects of air pollution and solid wasted is posalinc activities, urban industrial processes and land use and transportation implications in air and solid waste pollution; norms, standards, laws, organizations and policies in urban air quality control and solid waste management; example stabilized organic fraction best practices.

TEXT BOOKS:

- 1. A. S. Goodman and M. Hastak, Infrastructure planning handbook: Planning, engineering, and economics, McGraw-Hill, New York, 2006.
- 2. J. Parkin and D. Sharma, Infrastructure planning, Thomas Telford, London, 1999.

3. P. Chandra, Projects: Planning, analysis, selection, financing, implementation, and review, Tata McGraw-Hill, New Delhi, 2009.

REFERENCES:

- 1. J. Kelly, S. Male and D. Graham, Value management of construction projects, Blackwell Publishing, Oxford, 2003.
- 2. Vasant Desai, "Project Management", Himalaya Publishing, 1st Edition, 2010
- 3. James C. Van Horne, John M. Wachowicz, "Fundamentals of Financial Management",
- 4. PHI, 2nd Edition, 2000 Ronald W Hudson, "Infrastructure Management: integrating design, Construction, maintenance, rehabilitation and renovation", MGH, 1st Edition, 1997.

COURSE	DESIGNERS			
S. No	Name of the Faculty	Designation	Name of the College	Mail ID
1.	R. Abirami	Asst. Prof-I	AVIT	abirami.civil@avit.ac.in
2	Dr.S.P.Sangeetha	HOD-Civil	AVIT	sangeetha@avit.ac.in

17CVSE42	GREEN BUILDING AND ENERGY	Category	L	Т	Р	Cred it
	EFFICIENT BUILDING	EC(OE)	3	0	0	3
PREAMBLE						

Before starting with this course one must get a clear knowledge on the basics of green building,

learning the plan details of HVAC for a building, energy efficient modeling.

PREREQUISITE

Nil.

COURSE OBJECTIVES

1	To study about the Development & Plan Implementation.							
2	To learn about the fundamentals of electric power systems and building electric wiring.							
3	To study about the Bioclimatic design and concepts.							
4	To gain the knowledge about Water conservation & water management systems.							
5	To learn about the Key components of remodelling project.							
COL	JRSE OUTCOMES							
On th	On the successful completion of the course, students will be able to							
CO1	CO1. Describe what green building Apply							

COI. Describe what green building	Арріу
CO2. Understand the benefits and advantages of green building practices	Apply
CO3. Identify and describe green systems and features in residential and commercial buildings	Analyze
CO4. Define what makes up a healthy building	Apply
CO5. Describe green and sustainable materials and practices	Apply

CO5. Describe green and sustainable materials and practices

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

-	-		-								1				
COS	PO	PO	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
	1	2													
CO1	S	Μ	L	-	-	-	-	-	-	-	-	-			
CO2	S	Μ	L	Μ	-	-	-	-	-	-	-	-			
CO3	S	Μ	Μ	L	-	-	-	-	-	-	-	-			
CO4	S	Μ	Μ	Μ	-	-	-	-	-	-	-	_			

	CO5	S	М	L	-	-	-	-	-	-	-	-	L			
--	-----	---	---	---	---	---	---	---	---	---	---	---	---	--	--	--

S- Strong; M-Medium; L-Low

SYLLABUS

GREEN BUILDING BASICS AND PRACTICES: Site Design / Development & Plan Implementation, Resource Efficiency, Energy Efficiency, Water Efficiency, Indoor Environmental Quality and Homeowner Education, Operation, Maintenance & Practices. Assessment of building design and construction, emission of CO2, SO2, and NO2 of building materials, elements, and construction process.

ENERGY MANAGEMENT SYSTEM OF BUILDINGS: The objective of the course is to provide students the necessary tools to control, monitor and optimize the building's facilities, mechanical and electrical equipment for comfort, safety, and efficiency. It starts with the fundamentals of electric power systems and building electric wiring and then works through building automation systems (BAS) principles. The course allows students to acquaint applying BAS to commercial HVAC equipment, lighting systems, fire systems and security/observation systems.

LOW ENERGY ARCHITECTURE, PASSIVE BUILDING DESIGN: Solar geometry, climate/regional limitations, natural lighting, passive design and sustainability initiatives, insulating and energy storing material. Bioclimatic design and concepts. Case studies will be used extensively as a vehicle to discuss the success/failure of ideas and their physical applications.

WATER MANAGEMENT, BUILDING METHODS & MATERIALS : Water conservation, water management systems, water efficient landscaping, green roofing, rainwater harvesting, sanitary fixtures and plumbing systems, wastewater treatment and reuse, and process water strategies. AAC (Aerated Auto clave Concrete), ICF (Insulated Concrete Forms), new Advanced Framing & Insulation Techniques, SIPs (Structural Insulated Panels), Straw Bale and Pumice-crete Rammed Earth, Timber Frame, Straw Clay, and Earth ship buildings.

ENERGY EFFICIENT REMODELING : Key components of remodeling projects-windows, walls, roofs, heating and ventilation, insulation, tighten up the building envelope, Advances in building technology and materials, Incorporate active and passive solar into the home or commercial building, Mistakes to avoid, various improvements cost

TEXT BOOKS:

- 1. Kibert, C. J. "Sustainable Construction: Green Building Design and Delivery," Second Edition, New York: John Wiley & Sons, Inc., 2008.
- 2. Thermal analysis and design of passive solar buildings by A. K. Athienitis and Mat Santamouris.
- 3. Passive building design by N.K. Bansal, G. Hauser, and G. Minke

REFERENCES:

1. McDonough, W. and Braungart, M. "Cradle to Cradle: Remaking the Way We Make Things," New York: Farrar, Straus and Giroux, 2002

COURSE DESIGNERS

S. No	Name of the Faculty	Designatio n	Name of the College	Mail ID
1.	R. Abirami	Asst. Prof-I	AVIT	abirami.civil@avit.ac.in
2	Dr.S.P.Sangeetha	HOD-Civil	AVIT	sangeetha@avit.ac.in

COMPUTER SCIENCE AND ENGINEERING -OPEN ELECTIVE

170	CSEC09)		ET	HICAI	HAC	KING			(Category	L	Т	Р	Credit
											EC-PS	3	0	0	3
	MBLE			G	•.							1	1	1	
	lyze the EQUIS		oncept	s of sec	urity an	d hacki	ng proc	cess							
NIL															
COUR	RSE OB	JECTI	VES												
1	To un	derstan	d the ba	isic con	cepts in	ethica	l hackir	ng							
2	To identify vulnerabilities using ethical hacking techniques														
3	To understand security in web applications														
4	To understand various types of vulnerabilities in wireless networks														
5	To discuss about security tools and its applications														
COUR	RSE OU	TCOM	IES												
On the	success	ful con	pletion	of the	course,	student	ts will t	be able t	.0						
CO1. 7	. II. 1.		· · · ·		111*							I.I. James	1		
	To Unde	rstand	Dasics 11	n etnica	I nackir	ıg						Underst	and		
CO2: 1	To apply	hackin	g techn	iques ir	n real ti	me proł	olems					Apply			
СО3: Т	To apply	Securi	ty Featı	ures in v	web app	olication	18					Apply			
СО4: Т	To under	rstand a	nd appl	y secur	ity featu	ures in v	wireles	s netwo	rks			Underst	and an	d App	ly
СО5: Т	To apply	inform	ation se	ecurity	features	in real	time					Apply			
MAPP	PING W	ITH P	ROGR	AMMI	E OUT	COME	S AND	PROC	GRAM	ME SPE	CIFIC	OUTCO	MES		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
C01	М	Μ									L	L			
CO2	М	M		L								L			
CO3	М	M	L	L		Μ				T					
CO4	М	S	L			L				L		M		_	
CO5	M	L	u I I av	•		М					М	L			
5- Stro	ong; M-N	vieulum	i, L-L0	W											

SYLLABUS INTRODUCTION

Introduction to Hacking, Types of Hacking, Hacking Process, Security - Basics of Security- Elements of Security, Penetration Testing, Scanning, Exploitation- Web Based Exploitation. Simple encryption and decryption techniques implementation.

HACKING TECHNIQUES

9 – hours Building the foundation for Ethical Hacking, Hacking Methodology, Social Engineering, Physical Security, Hacking Windows, Password Hacking, and Privacy Attacks, Hacking the Network, Hacking Operating Systems- Windows & Linux, Application Hacking, Footprinting, Scanning, and Enumeration. Implementing System Level Hacking- Hacking Windows & Linux.

WEB SECURITY

9 - hours Evolution of Web applications, Web application security, Web Application Technologies- Web Hacking, Web functionality, How to block content on the Internet, Web pages through Email, Web Messengers, Unblocking applications, Injecting Code- Injecting into SQL, Attacking Application Logic. Check authentication mechanisms in simple web applications. Implementation of Web Data Extractor and Web site watcher. Implementation of SQL Injection attacks in ASP.NET.

WIRELESS NETWORK HACKING

Introduction to Wireless LAN Overview, Wireless Network Sniffing, Wireless Spoofing, Port Scanning using Netcat, Wireless Network Probing, Session Hijacking, Monitor Denial of Service (DoS) UDP flood attack, Man-in-the-Middle Attacks, War Driving, Wireless Security Best Practices, Software Tools, Cracking WEP, Cracking WPA & WPA-II. Implementation- Locate Unsecured Wireless using Net-Stumbler/ Mini-Stumbler.

APPLICATIONS

9 - hours

Safer tools and services, Firewalls, Filtering services, Firewall engineering, Secure communications over insecure networks, Case Study: Mobile Hacking- Bluetooth-3G network weaknesses, Case study: DNS Poisoning, Hacking Laws. Working with Trojans using NetBus.

TEXT BOOKS

1. Stuart McClure, Joel Scambray, George Kurtz, "Hacking Exposed 6: Network Security Secrets & Solutions", Seventh edition, McGraw-Hill Publisher, 2012.

2. Kevin Beaver, "Hacking for Dummies" Second Edition, Wiley Publishing, 2007.

3. Dafydd Stuttard and Marcus Pinto, "The Web Application Hacker's Handbook: Discovering and Exploiting Security Flaws" Wiley Publications, 2007.

4. Ankit Fadia, "An Unofficial Guide to Ethical Hacking" Second Edition, Macmillan publishers India Ltd, 2006. REFERENCES

1. Hossein Bidgoli, "The Handbook of Information Security" John Wiley & Sons, Inc., 2005.

COURSE DESIGNERS

S. No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr.R.Jaichandran	Associate Professor	CSE	<u>rjaichandran@avit.ac.in</u>
2	M. Annamalai	Assistant Professor	CSE	annamalaim@vmkvec.edu.in

9 - hours

170	CSEC11			GR	EEN C	OMPU	TING			(Category	L	Т	Р	Credit
											EC-PS	3	0	0	3
PREA		1 1	. 1			<i>.</i> •	<i></i>	1.00							
-	ure kno EQUIS		to adop	ot green	compu	ting pra	actices	and To	learn at	sout ener	gy savin	g practic	es		
NIL	EQUIS	116													
COUR	SE OB	JECTI	VES												
1	To ac	quire kr	nowledg	ge to ad	opt gree	en comj	puting p	practice	S						
2	To mi	nimize	negativ	e impa	cts on th	ne envir	ronmen	t							
3	To learn about energy saving practices and To understand the impact of e-waste and carbon waste														
4	4 To learn about green compliance. And implementation using IT														
COUR	SE OU	тсом	IES												
On the	success	ful con	pletion	of the	course,	student	ts will t	be able t	to						
CO1: T	To acquire knowledge to adopt green computing practices						Understand								
СО2: Т	'o minir	nize ne	gative i	mpacts	on the o	environ	ment					Apply			
	'o learn bon was		energy s	aving p	oractices	s and To	o under	stand th	ne impa	ct of e-w	vaste	Understa	and		
СО4: Т	o learn	about g	green co	mplian	ce. And	l impler	nentati	on using	g IT			Understa	and and	d App	oly
MAPP	ING W	ITH P	ROGR	AMMI	E OUT	COME	S AND	PROC	GRAM	ME SPE	CIFIC	OUTCO	MES		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1	М		S			М			S		L	L			
CO2	М	S	Μ		S					L		L			
CO3	М	М		М			М		L						
CO4	M	S						L		М		Μ			
S- Stro	ng; M-N	Viedium	n; L-Lov	W											

SYLLABUS

FUNDAMENTALS

Green IT Fundamentals: Business, IT, and the Environment - Benefits of a Green Data Centre - Green Computing:Carbon Foot Print, Scoop on Power-GreenITStrategies: Drivers, Dimensions, and Goals Environmentally Responsible Business: Policies, Practices, and Metrics. 9 – hours

GREEN ASSETS AND MODELING

Green Assets: Buildings, Data Centres, Networks, Devices, Computer and Earth Friendly peripherals, Greening Mobile devices - Green Business Process Management: Modelling, Optimization, and Collaboration - Green Enterprise Architecture – Environmental Intelligence – Green Supply Chains – Green Information Systems: Design and Development Models.

GRID FRAMEWORK

Virtualizing of IT Systems – Role of Electric Utilities, Telecommuting, Teleconferencing and Teleporting – Materials Recycling - Best Ways for Green PC - Green Data Center - Green Grid Framework. Optimizing Computer Power Management, Seamless Sharing Across Systems. Collaborating and Cloud Computing, Virtual Presence. **GREEN COMPLIANCE** 9 - hours

Socio-Cultural Aspects of Green IT - Green Enterprise Transformation Roadmap - Green Compliance: Protocols, Standards, And Audits - Emergent Carbon Issues: Technologies and Future. Best Ways to Make Computer Greener.

GREEN INITIATIVES WITH IT and CASE STUDIES

Green Initiative Drivers and Benefits with IT - Resources and Offerings to Assist Green Initiatives. - Green Initiative Strategy with IT - Green Initiative Planning with IT - Green Initiative Implementation with IT - Green Initiative Assessment with IT. The Environmentally Responsible Business Strategies (ERBS) - Case Study Scenarios for Trial Runs - Case Studies - Applying Green IT Strategies and Applications to a Home, Hospital, Packaging Industry and Telecom Sector.

TEXT BOOKS

1.Bhuvan Unhelkar, —Green IT Strategies and Applications-Using Environmental Intelligencel, CRC Press, June 2011 2.Carl Speshocky, —Empowering Green Initiatives with ITI, John Wiley and Sons, 2010.

REFERENCES

1. Alin Gales, Michael Schaefer, Mike Ebbers, —Green Data Center: Steps for the Journey, Shoff/IBM rebook, 2011.

2. John Lamb, —The Greening of ITI, Pearson Education, 2009.

3. Jason Harris, —Green Computing and Green IT- Best Practices on Regulations and Industry, Lulu.com, 2008.

COURSE DESIGNERS

S. No.	Name of the Faculty	Designation	Department	Mail ID
1	K.Karthik	Associate Professor	CSE	karthik@avit.ac.in
2	B. Sundaramurthy	Associate Professor	CSE	sundaramurthy@vmkvec.edu.in

9 - hours

9 - hours

17CS	EC24										Toto com	L	Т	Р	C	adit
	T/CBEC24				SOUF	RCE SY	STEN	IS			Category	L	1	Р	Cr	redit
											PC	3	0	0		3
PREAM																
The purp																
that tech patent, o																
these goa			causes	or activ	11. 100	standar	a can p	roperty	be des	cillocu a	s open	слеері		Atent	n av	
PRERE		ITE														
NIL																
COURS	SE OB	JECTI	VES													
1	Studer	nts will	study c	commor	n open s	source s	oftware	e licens	es, oper	n source	project s	tructure				
2	2 To understand distributed team software development, and current events in the open source world															
3	To learn free and open source components & tools															
4	Students will also work on an open source project and will be expected to make a significant contribution															
COURS	E OU	TCOM	IES													
On the su	1100000	ful con	nletion	of the	course	student	s will b	e able i	to							
	uccess		ipicuoi		course,	studen	.5 WIII (10			[
CO1: exp	plain c	ommor	n open s	source l	icenses	and the	e impac	t of cho	osing a	license		Underst	and			
CO2: exp	plain o	pen so	arce pro	oject str	ucture a	and hov	v to suc	cessful	ly setup	a projec	t	Analyze	;			
CO3: be	-	-	-	-												
test-drive	en deve	elopme	nt, issue	es track								Underst	and			
control, a																
CO4: Kn		•		-								Apply				
MAPPI	NG W	ITH P	ROGR	AMMI	E OUT	COME	S AND	PROC	GRAM	ME SPE	CIFIC	OUTCO	MES			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO	l PS	02	PSO3
CO1	S		L			L		S		~	М					
CO2		S		М	C				M	S	C	М		_		
CO3	L	c	S		S				L		S					
CO4		S	ı; L-Lo [,]		S		Μ				L					

SYLLABUS

OPEN SOURCE LICENSING

Open Source Licensing, Contract, and Copyright Law-The MIT, BSD, Apache, and Academic Free Licenses-The GPL, LGPL, and Mozilla Licenses-Qt, Artistic, and Creative Commons Licenses-Non-Open Source Licenses. 9 – hours

OPEN SOURCE OPERATING SYSTEM

Linux history-distributions-licensing-installing Linux-working with directories-working with files-working with file contents-the Linux file tree. shell expansion: commands and arguments-control operators-shell variables-file globing. Pipes and commands: I/O redirection-filters -regular expressions. Introduction to vi - scripting: scripting introductionscripting loops-scripting parameters 9 - hours

LINUX USER MANAGEMENT

local user management- introduction to users-user management-user passwords-user profiles -groups. file security: standard file permissions-advanced file permissions-access control lists-file links.

LIBRE OFFICE -WORD, SPREAD SHEET

Introduction of libre office- WRITER - THE WORD PROCESSOR: Opening a Document -Laying Out the Page-Setting paper size, margins, and orientation -Creating headers and footers -Numbering pages -Entering and Editing Text-Modifying text-Moving and copying text.

CALC — THE SPREADSHEET: Creating a Spreadsheet -Inputting Your Data -Entering your data -Editing your data -Filling cells automatically -Managing Columns and Rows-Copying, pasting, cutting, dragging, and dropping your cells -Adding the Art -Formula Basics.

LIBRE OFFICE- PRESENTATION

IMPRESS — THE PRESENTATION Creating a Presentation -Opening an existing presentation -Adding Slides -Adding text to a slide -Saving Your Presentation for Posterity - Making Presentations Picture Perfect -Adding Images -Clipping art -Drawing objects -Coloring Backgrounds - Creating a plain-colored background -Creating a gradient background.

TEXT BOOKS

1. Understanding Open Source and Free Software Licensing By Andrew M. St. Lauren, August 2004, Pages: 207. (Unit I)

2. Linux study link : https://itsfoss.com/learn-linux-for-free/ (Unit II & Unit III).

3.https://www.libreoffice.org/assets/Uploads/Documentation/en/GS51-GettingStartedLO.pdf (Unit IV & V)

REFERENCES

1. Andy channelle (2009), "Beginning OpenOffice 3", Aprèss.

2. Ellen Siever, Stephen Figgins, Robert Love, Arnold Robbins, "Linux in a Nutshell", Sixth Edition, OReilly Media, 2009.

3. N. B. Venkateshwarlu (Ed); Introduction to Linux: Installation and Programming, B S Publishers; 2005.

4. Matt Welsh, Matthias Kalle Dalheimer, Terry Dawson, and Lar Kaufman, Running Linux, Fourth Edition, O'Reilly Publishers, 2002.

5. Carla Schroder, Linux Cookbook, First Edition, O'Reilly Cookbooks Series, 2004.

COURSE DESIGNERS

S. No.	Name of the Faculty	Designation	Department	Mail ID
1	R.Kamatchi Priya	Assistant Professor	CSE	kamatchipriya@avit.ac.in
2	Dr.S.Senthil kumar	Associate Professor	CSE	vmkvec.itsenthilkumar@gmail.com

9 - hours

9 - hours

170	CSEC30)		U	NIX IN	TERN	ALS				Category	L	Т	Р	Credit
											PC	3	0	0	3
program	lk is a	migrati	ng from	a Win											novices or ies and the
PRER NIL	EQUIS	ITE													
COUR	SE OB	JECTI	VES												
1	1 To understand the design of the UNIX operating system														
2	2 To become familiar with the various data structures used														
COUR	SE OU	TCOM	IES												
On the	success	ful con	npletion	of the	course,	student	ts will t	e able t	.0						
СО1: Т	o learn	The ba	sic Uni	x operat	ting sys	tems ar	nd its ba	asic con	nmands			Understa	and		
СО2: Т	o analy	ze the b	ouffers a	and ker	nel repr	esentati	ion					Analysis	3		
СО3: Т	o under	stand t	he UNI	X syste	m struc	ture, sy	stem ca	ılls				Rememb	ber		
СО4: Т	o under	stand U	JNIX se	egmenta	ation, sc	hedulir	ng, pagi	ng				Understa	and		
											ECIFIC O		/IES	-	
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1	S			L					L	0		S			
CO2 CO3		S			S		M			S	М	S			
C03 C04	L		M		3		L		S		М	3			
	ng; M-N	Medium	n; L-Lov	N			Ľ		5		141				
	<u>,</u>														

General Review of the System-History-System structure-User Perspective-OperatingSystem Services- Assumptions About Hardware. Introduction to the Kernel-ArchitectureSystem Concepts-Data Structures- System Administration DISK BLOCKS 9 – hours The Buffer Cache-Headers-Buffer Pool-Buffer Retrieval-Reading and Writing Disk Blocks - Advantages and Disadvantages. Internal Representation of Files-Inodes- Structure-Directories-Path Name to Inode- Super Block-Inode Assignment-Allocation of Disk Blocks -Other File Types **FILE SYSTEM** 9 - hours System Calls for the File System-Open-Read-Write-Lseek-Close-Create-Special files Creation -Change Directory and Change Root-Change Owner and Change Mode-Stat-Fstat-Pipes-Dup-Mount-Unmount-Link-Unlink-File System Abstraction-Maintenance. **PROCESS MANAGEMENT** 9 - hours The System Representation of Processes-States-Transitions-System Memory-Context of a Process-Saving the Context-Manipulation of a Process Address Space-Sleep Process Control-signals-Process Termination-Awaiting-Invoking other Programs-The Shell-System Boot and the INIT Process.

MEMORY MANAGEMENT

9 - hours Memory Management Policies-Swapping-Demand Paging-a Hybrid System-I/O Subsystem-Driver Interfaces-Disk Drivers-Terminal Drivers.

TEXT BOOKS

SYLLABUS INTRODUCTION

1. Maurice J. Bach, "The Design of the Unix Operating System", Pearson Education 2002.

REFERENCES

1. UreshVahalia, "UNIX Internals: The New Frontiers", Prentice Hall, 2000.

2. John Lion, "Lion's Commentary on UNIX", 6th edition, Peer-to-Peer Communications, 2004.

3. Daniel P. Bovet & Marco Cesati, "Understanding the Linux Kernel", O'REILLY, Shroff Publishers & Distributors Pvt. Ltd, 2000.

4. M. Beck et al, "Linux Kernel Programming

COURSE DESIGNERS

S. No.	Name of the Faculty	Designation	Department	Mail ID				
1	R.Kamatchi Priya	Assistant Professor	CSE	kamatchipriya@avit.ac.in				
2	V.Amirthalingam	Assistant Professor	CSE	Amirthalingam@vmkvec.edu.in				

17C	SEC32			VI	RTUAI	L REA	LITY				Category	L	Т	Р	Credit
											PC	3	0	0	3
PREA		•										•			
			a detaile	ed unde	rstandiı	ng of th	e conce	pts of V	Virtual	Reality	and its ap	plication.			
PRER	EQUIS of Netw														
COUR			VES												
1			ometric	modell	ing and	Virtua	l enviro	nment							
2					-										
2	10 Le	arn vir	tual Ha	rdware	and Sol	tware									
3	To Le	arn Vir	tual Re	ality ap	plicatio	ns									
COUR	SE OU	TCOM	IES												
On the	success	ful con	pletion	of the	course,	student	ts will t	e able	to						
CO1: T graphics		stand t	he basic	es of vir	tual rea	llity, vii	tual en	vironm	ent, and	l compu	ter	Underst	and &	Apply	7
CO2: T	'o under	stand a	nd lear	n the co	ncept o	f geom	etric m	odelling	g and tra	ansform	ations	Underst	and &	Apply	τ
СО3: Т	'o undei	stand a	nd lear	n the co	ncept o	f conte	nt creat	ion and	interac	ction issu	les	Underst	and		
CO4: T	'o undei	stand t	he conc	ept of V	/R hard	ware a	nd softv	vare				Underst	and &	Apply	7
CO5: T	'o under	stand t	he VR a	applicat	ions							Underst	and		
MAPP	ING W	ITH P	ROGR	AMMI	E OUT	COME	S AND	PROC	GRAM	ME SPI	ECIFIC (DUTCON	MES		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1	S	S	М	S	S	М	М	S	S	М	М				
CO2	S	S	М	S	S	S	М	S	М	М	М				
CO3	М	М	М	М	S	М	L	М	L	М	L				
CO4	М	М	М	М	М	М	М	М	М	Μ	М				
CO5	М	М	Μ	М	М	М	М	М	L	М	М				
S- Stro	ng; M-N	Aedium	n; L-Lov	W											

SYLLABUS	
) - hours
Virtual Reality & Virtual Environment : Introduction – Computer graphics – Real time computer graphic	
Simulation – Virtual environments –requirement – benefits of virtual reality- 3D Computer Graphics : Int	
The Virtual world space – positioning the virtual observer – the perspective projection – human vision – ste	
perspective projection – 3D clipping – Colour theory – Simple 3D modelling – Illumination models – Refle	ection
models – Shading algorithms	
	– hours
Geometric Modelling: Introduction – From 2D to 3D – 3D space curves – 3D boundary representation - G	eometrical
Transformations: Introduction – Frames of reference – Modelling transformations – Instances – Picking –	· Flying –
Scaling the VE - Collision detection - A Generic VR system: Introduction - The virtual environment - the	e Computer
environment – VR Technology – Model of interaction – VR System	
CONTENT CREATION AND INTERACTION ISSUES 9	- hours
Gestalt perceptual organization - real world content - field of view - paradigm shift from real environment t	o virtual
environment - reusing existing content - transition to VR content Human factors : Direct Vs Indirect Inter	action -
Modes and flow - Input device characteristics - viewpoint and control patterns.	
DESIGN ISSUES 9	- hours
Optimizing performance - optimizing target hardware and software - VR Hardware : Introduction - senso	or hardware –
Head-coupled displays - Aquatic hardware - Integrated VR systems-VR Software: Introduction - Modellin	ng virtual
world -Physical simulation- VR toolkits - multiplayer environment - multiplayer networking architecture.	
APPLICATION 9	- hours
Engineering – Entertainment – Science – Training – classroom.	
TEXT BOOKS	
1. John Vince, "Virtual Reality Systems", Pearson Education Asia, 2002	
2. Jason Jerald, "The VR book: Human centered design for virtual reality", CRC Press, 2015	
REFERENCES	
1 Adams "Visualizations of Virtual Reality" Tata McGraw Hill 2000	

1. Adams, "Visualizations of Virtual Reality", Tata McGraw Hill, 2000.

2. Grigore C. Burdea, Philippe Coiffet, "Virtual Reality Technology", WileyInterscience, 1 Edition, 1994.

3. William R. Sherman, Alan B. Craig, "Understanding Virtual Reality: Interface, Application, and Design", Morgan Kaufmann, 1st Edition, 2002.

4. Jonathan Linowes, "Unity Virtual Reality Projects- Explore the world of virtual reality by building immersive and fun VR Projects using Unity 3D", Packt Publishing, 2015.

S. No.	o. Name of the Designation Faculty		Department	Mail ID		
1	S. Muthuselvan	Assistant Professor	CSE	muthuselvan@avit.ac.in		
2	T.Geetha	Assistant Professor	CSE	geetha@vmkvec.edu.in		

ELECTRICAL AND ELECTRONICS ENGINEERING - OPEN ELECTIVE

17EECC14	ELECTRICAL MACHINES AND DRIVES	Category	L	Т	Р	Credit
		CC	3	0	0	3

Preamble

In a modern world the electric drives are essential for all the applications especially in mechanical engineering the Electrical drives represent a dominant source of mechanical power in various applications in production, material handling, and process industries etc. hence the course provides the magnificent knowledgeabout basic concepts, performance analysis of conventional and solid state control of electric drives which can help the mechanical engineer to understand and implement the concepts to various applications in engineering sector.

Prerequisite

xxx: Basics Electrical and Electronics Engineering A. Basic Electrical Engineering

Course Objectives

1. To select appropriate electrical drive system based on their thermal factors.

2. To interpret the characteristics of DC motors and perform appropriate conventional control techniques for desired applications.

3. To interpret the characteristics of AC motors and perform appropriate conventional control techniques for desired applications.

4. To employ the solid state speed control techniques for DC drives for efficient control.

5. To employ solid state speed control techniques for AC drives for proficient and loss less control.

Course Outcomes

On the successful completion of the course, students will be able to

CO1. Define the conceptsof an electrical drive system and choose a suitable motor drive for	Remember
different applications.	
CO2. Explain the working principle with their characteristics and Predetermine the	Understand
performance of DC drives with various load and unload conditions.	
CO3.Interpret the conventional speed control methods of DC motors with starting, braking	Apply
Methods.	
CO4.Identify the parts of AC motors, Predetermine the performance of AC motors with their	Analyse
characteristics and Interpret the conventional speed control methods of AC motors with	
starting and braking methods.	
CO5. Evaluate the proficient control of AC and DC drives by utilize the power electronics	Evaluate
concepts.	

Mapping with Programme Outcomes and Programme Specific Outcomes

											-	-		-	
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1.	S	M			L	100	107	100	105	1010	1011	1012	1501	1002	1005
CO2.	S	S	Μ												
CO3.	М	L	Μ	S											
CO4.	S	S		М											
CO5.	S	М	S	М	М						М	М			

S- Strong; M-Medium; L-Low

Syllabus

9 - hours

UNIT **INTRODUCTION**

- I

Electrical Drives - Basic Elements of a drive system – Types of Electrical Drives –Multi quadrant operation of Electric Drive -Classes of duty – Selection of power rating for drive motors -Factors influencing the choice of

UNIT - II DC Drives

Constructional details of DC Motor – Principle of operation DC Motor – Back EMF and torque equations – Types of DC Motors – Characteristics of DC Motors – Starting of DC Motors – Types of Braking – Conventional Speed Control of DC Motors: Armature Voltage Control, Field Flux Control, Ward Leonard Control. Stepper motor: Permanent magnet stepper motor – Principle of operation – Applications.

UNIT - III AC Drives

Construction and operational details of Single and Three Phase Induction Motors – Types – Slip – Torque Equations – Speed-Torque Characteristics – Types of Starters – Types of Braking – Conventional Speed Control of Induction Motors – Construction and operational details of synchronous motor – Starting methods- types of Excitation -V curve and inverted V curve-Servomotor- Applications.

UNIT - IV Solid State Drives and Speed Control of DC Drives 9 - hours

Introduction of Solid state Drives- Functional block diagram and advantages of Solid state Drives – Converter – Phase control- Single Phase and Three Phase Fully controlled Converter: Principle of operation and waveforms of single phase and three phase fully controlled converter fed DC drive – Chopper - Control strategies- Choppers Fed DC Motor Drive – Applications.

UNIT - V Solid State Speed Control of AC Drives 9 - h

Inverter, AC voltage controller and Cycloconverter - Voltage Source Inverter and Current Source Inverter – VSI fed Three Phase Induction Motors – CSI Fed Three Phase Induction Motors- Cycloconverter Fed Induction Motor Control - Voltage/Frequency Control of induction motor, Static Rotor Resistance Control – Static Scherbius and static Kramer Drives block diagram and explanation – Applications.

TEXTBOOKS

1 Gopal.K.Dubey,"Fundamentals of Electrical Drives" Narosa Publishing House, 2001

2 Theraja, B.L and Theraja, A.K., "A text book of Electrical Technology – Volume II (AC & DC

Machines)" S.Chand& Company Ltd., New Delhi, 2009.

REFERENCES

1 VedamSubrahmanyam, "Electric Drives Concepts and Applications" Tata McGraw Hill Publishing Company Ltd., New Delhi, 1998.

2 M.D.Singh and K.B. Khanchandani, "Power Electronics", Tata McGraw Hill Publishing Company Ltd., New Delhi, 2008

Course Designer

S.No	ame of the Faculty	ail ID
1	r.G.Ramakrishnaprabu	ishprabugovind@gmail.com

9 - hours

9 - hours

9 - hours

		ME	ASUR	EME	NTS A	ND II	NSTR	UMEN	NTAT	ION		Catego	ory I	Т	Р	С
17EE(C04	Tota	l Cont	act Ho	ours – 4	45						CC		3 0	0	3
1712120		Prer	equisit	e – Ba	sic Ele	ectrica	1 & El	ectroni	ics Eng	gineeri	ng					
		Co-r	equisi	te - NI	L											
Preamb	le															
This co measure using bri	ment of	curren	nt, volt	tage, p	ower,	energy										
COURS	E OBJ	ЕСТГ	VES													
1		To i	ntrodu	ce the	fundaı	mental	s of el	ectrica	l and e	electror	nic inst	ruments	8			
2		To u	nderst	and th	e work	king pr	rinciple	es of th	ne elec	trical a	nd eleo	etronic r	neters			
3		To U	Jnders	tand th	ne wor	king p	rincipl	e of A	C, DC	bridge	s.					
4		To i	To introduce various data storage and display devices.													
5		To i	ntrodu	ce vari	ious tra	ansduc	cers an	d the d	lata aco	quisitic	on syst	ems.				
COURS	E OUI	COM	ES													
On succ	essful c	comple	tion o	f the c	ourse	, the st	tudent	s will	be abl	e to						
CO	1	-		e func ng inst			nts, ch	aracte	ristics,	, stand	ards ar	nd calib	ration	A	pply	
CO	2	Desc	cribe tl	ne wor	king o	of vario	ous ele	ctrical	and el	ectroni	c mete	ers		Und	erstar	nd
CO	3	Dete	rmine	unkno	wn va	lues u	sing br	idges.						Understand		
CO	4	Desc	cribe tl	ne oper	ration	of stor	age an	d disp	lay dev	vices.				Und	erstar	nd
C0	5	Exp	ain th	e work	ing of	variou	is trans	sducer	s, ADO	C and I	DAC.			A	pply	
Mapping	g with P	rogran	nme ou	itcome	es and	Progra	umme S	Specifi	ic Outo	comes						
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PS	803
CO1	S	М	L	М	-	-	-	-	S	-	М	_	_	_		-
CO2	_	_	_	_	-	-	-	-	_	_	-	-	_	_		_
CO3	S	М	S		S	_	_	S	M	_		_		_		_
	M	M	L	_	L	_	_	M	-	_	М	М	_			_
CO4							1	1		1		1			1	

UNIT - 1 INTRODUCTION 9 Functional elements of an instrument - static and dynamic characteristics – errors in measurement - statistical evaluation of measurement data - standard and calibration ELECTRICAL AND ELECTRONICS INSTRUMENTS 9 Principle and types analog and digital ammeters and voltmeters – single and three phase Wattmeters and Energy meter – instrument transformers – instruments for measurement of frequency and phase. 9 UNIT - III COMPARISON METHODS OF MEASUREMENTS 9 D.C & A.C potentiometers, D.C & A.C bridges, transformer ratio bridges, self-balancing bridges. Interference & screening – Multiple earth and earth loops – Electrostatic and electromagnetic interference – Grounding techniques. 9 UNIT - IV STORAGE AND DISPLAY DEVICES 9 Magnetic disc and tape recorders – digital plotters and printers – CRT displays – digital CRO – LED, LCD and Dot matrix displays. Data Logger 9 UNIT - V TRANSDUCERS 9 Classification of transducers – selection of transducers – resistive, capacitive and inductive transducers – piezo electric transducers – optical and digital transducers – Elements of data acquisition system – A/D, D/A converters – Smart sensors. TEXTBOOK 1 1. A.K. Sawhney, 'A Course in Electrical & Electronic Measurements & Instrumentation', Dhanpat Rai and Co, 2004. 2. Obcebetin E.O. and Manik D.N., Measurement Systems – Applications and Design, Special Indian Edition, Tata McGraw Hill, IEdition 2004. 2. A.J. Bouwens, 'Digital In	SILLAD										
evaluation of measurement data - standard and calibration UNIT - II ELECTRICAL AND ELECTRONICS INSTRUMENTS 9 Principle and types analog and digital ammeters and voltmeters – single and three phase Wattmeters and Energy meter- instrument transformers – instruments for measurement of frequency and phase. UNIT - III COMPARISON METHODS OF MEASUREMENTS 9 D.C & A.C potentiometers, D.C & A.C bridges, transformer ratio bridges, self-balancing bridges. Interference & screening – Multiple earth and earth loops – Electrostatic and electromagnetic interference – Grounding techniques. UNIT - IV STORAGE AND DISPLAY DEVICES 9 Magnetic disc and tape recorders – digital plotters and printers – CRT displays – digital CRO – LED, LCD and Dot matrix displays. Data Logger UNIT - V TRANSDUCERS 9 Classification of transducers – selection of transducers – resistive, capacitive and inductive transducers – piezo electric transducers – optical and digital transducers. Elements of data acquisition system – A/D, D/A converters – Smart sensors. TEXTBOOK 1. A.K. Sawhney, 'A Course in Electrical & Electronic Measurements & Instrumentation', Dhanpat Rai and Co, 2004. 2. Doebelin E.O. and Manik D.N., Measurement Systems – Applications and Design, Special Indian Edition, Tata McGraw Hill Education Pvt. Ltd., 2007. REFERENCES 1. H.S. Kalsi, 'Electronic Instrumentation', Tata McGraw Hill, II Edition 2004. 2. A.J. Bouwens, 'Digital Instrumentation', Tata McGraw Hill, 1997. 3. D.V.S. Moorthy, 'Transducers and Instrumentation', Prentice Hall of India Pvt Ltd, 2007.	UNIT - I	INTRODUCTION	9								
Principle and types analog and digital ammeters and voltmeters – single and three phase Wattmeters and Energy meter – instrument transformers – instruments for measurement of frequency and phase. UNIT - III COMPARISON METHODS OF MEASUREMENTS 9 D.C & A.C potentiometers, D.C & A.C bridges, transformer ratio bridges, self-balancing bridges. Interference & screening – Multiple earth and earth loops – Electrostatic and electromagnetic interference – Grounding techniques. 9 UNIT - IV STORAGE AND DISPLAY DEVICES 9 Magnetic disc and tape recorders – digital plotters and printers – CRT displays – digital CRO – LED, LCD and Dot matrix displays. Data Logger 9 UNIT - V TRANSDUCERS 9 Classification of transducers – selection of transducers – resistive, capacitive and inductive transducers – piezo electric transducers – optical and digital transducers- Elements of data acquisition system – A/D, D/A converters – Smart sensors. TEXTBOOK 1. A.K. Sawhney, 'A Course in Electrical & Electronic Measurements & Instrumentation', Dhanpat Rai and Co, 2004. 2. Doebelin E.O. and Manik D.N., Measurement Systems – Applications and Design, Special Indian Edition, Tata McGraw Hill Education Pvt. Ltd., 2007. REFERENCES 1. H.S. Kalsi, 'Electronic Instrumentation', Tata McGraw Hill, II Edition 2004. 2. A.J. Bouwens, 'Digital Instrumentation', Tata McGraw Hill, 1997. 3. D.V.S. Moorthy, 'Transducers and Instrumentation', Prentice Hall of India Pvt Ltd, 2007.			rement - statistical								
meter- instrument transformers – instruments for measurement of frequency and phase. UNIT - III COMPARISON METHODS OF MEASUREMENTS 9 D.C & A.C potentiometers, D.C & A.C bridges, transformer ratio bridges, self-balancing bridges. Interference & screening – Multiple earth and earth loops – Electrostatic and electromagnetic interference – Grounding techniques. 9 UNIT - IV STORAGE AND DISPLAY DEVICES 9 Magnetic disc and tape recorders – digital plotters and printers – CRT displays – digital CRO – LED, LCD and Dot matrix displays. Data Logger 9 UNIT - V TRANSDUCERS 9 Classification of transducers – selection of transducers – resistive, capacitive and inductive transducers – piezo electric transducers – optical and digital transducers. Elements of data acquisition system – A/D, D/A converters – Smart sensors. 9 TEXTBOOK 1 A.K. Sawhney, 'A Course in Electrical & Electronic Measurements & Instrumentation', Dhanpat Rai and Co, 2004. 2007. REFERENCES 1 1. H.S. Kalsi, 'Electronic Instrumentation', Tata McGraw Hill, II Edition 2004. 2007. REFERENCES 1. H.S. Kalsi, 'Electronic Instrumentation', Tata McGraw Hill, 1997. 3. D.V.S. Moorthy, 'Transducers and Instrumentation', Prentice Hall of India Pvt Ltd, 2007.	UNIT - II	ELECTRICAL AND ELECTRONICS INSTRUMENTS 9									
D.C & A.C potentiometers, D.C & A.C bridges, transformer ratio bridges, self-balancing bridges. Interference & screening – Multiple earth and earth loops – Electrostatic and electromagnetic interference – Grounding techniques. UNIT - IV STORAGE AND DISPLAY DEVICES 9 Magnetic disc and tape recorders – digital plotters and printers – CRT displays – digital CRO – LED, LCD and Dot matrix displays. Data Logger 9 UNIT - V TRANSDUCERS 9 Classification of transducers – selection of transducers – resistive, capacitive and inductive transducers – piezo electric transducers – optical and digital transducers- Elements of data acquisition system – A/D, D/A converters – Smart sensors. TEXTBOOK 1. A.K. Sawhney, 'A Course in Electrical & Electronic Measurements & Instrumentation', Dhanpat Rai and Co, 2004. 2. Doebelin E.O. and Manik D.N., Measurement Systems – Applications and Design, Special Indian Edition, Tata McGraw Hill Education Pvt. Ltd., 2007. REFERENCES 1. H.S. Kalsi, 'Electronic Instrumentation', Tata McGraw Hill, II Edition 2004. 2. A.J. Bouwens, 'Digital Instrumentation', Tata McGraw Hill, 1997. 3. D.V.S. Moorthy, 'Transducers and Instrumentation', Prentice Hall of India Pvt Ltd, 2007.											
& screening – Multiple earth and earth loops – Electrostatic and electromagnetic interference – Grounding techniques. 9 UNIT - IV STORAGE AND DISPLAY DEVICES 9 Magnetic disc and tape recorders – digital plotters and printers – CRT displays – digital CRO – LED, LCD and Dot matrix displays. Data Logger 9 UNIT - V TRANSDUCERS 9 Classification of transducers – selection of transducers – resistive, capacitive and inductive transducers – piezo electric transducers – optical and digital transducers. Elements of data acquisition system – A/D, D/A converters – Smart sensors. TEXTBOOK 1. A.K. Sawhney, 'A Course in Electrical & Electronic Measurements & Instrumentation', Dhanpat Rai and Co, 2004. 2. Doebelin E.O. and Manik D.N., Measurement Systems – Applications and Design, Special Indian Edition, Tata McGraw Hill Education Pvt. Ltd., 2007. REFERENCES 1. H.S. Kalsi, 'Electronic Instrumentation', Tata McGraw Hill, II Edition 2004. 2. A.J. Bouwens, 'Digital Instrumentation', Tata McGraw Hill, 1997. 3. D.V.S. Moorthy, 'Transducers and Instrumentation', Prentice Hall of India Pvt Ltd, 2007.	UNIT - III	COMPARISON METHODS OF MEASUREMENTS	9								
Magnetic disc and tape recorders – digital plotters and printers – CRT displays – digital CRO – LED, LCD and Dot matrix displays. Data Logger UNIT - V TRANSDUCERS Q Classification of transducers – selection of transducers – resistive, capacitive and inductive transducers – piezo electric transducers – optical and digital transducers- Elements of data acquisition system – A/D, D/A converters – Smart sensors. TEXTBOOK 1. A.K. Sawhney, 'A Course in Electrical & Electronic Measurements & Instrumentation', Dhanpat Rai and Co, 2004. 2. Doebelin E.O. and Manik D.N., Measurement Systems – Applications and Design, Special Indian Edition, Tata McGraw Hill Education Pvt. Ltd., 2007. REFERENCES 1. H.S. Kalsi, 'Electronic Instrumentation', Tata McGraw Hill, II Edition 2004. 2. A.J. Bouwens, 'Digital Instrumentation', Tata McGraw Hill, 1997. 3. D.V.S. Moorthy, 'Transducers and Instrumentation', Prentice Hall of India Pvt Ltd, 2007.	& screening – N	& screening - Multiple earth and earth loops - Electrostatic and electromagnetic interference - Grounding									
Dot matrix displays. Data Logger 9 UNIT - V TRANSDUCERS 9 Classification of transducers – selection of transducers – resistive, capacitive and inductive transducers – piezo electric transducers – optical and digital transducers- Elements of data acquisition system – A/D, D/A converters – Smart sensors. 9 TEXTBOOK 1. A.K. Sawhney, 'A Course in Electrical & Electronic Measurements & Instrumentation', Dhanpat Rai and Co, 2004. 2. Doebelin E.O. and Manik D.N., Measurement Systems – Applications and Design, Special Indian Edition, Tata McGraw Hill Education Pvt. Ltd., 2007. REFERENCES 1. H.S. Kalsi, 'Electronic Instrumentation', Tata McGraw Hill, II Edition 2004. 2. A.J. Bouwens, 'Digital Instrumentation', Tata McGraw Hill, 1997. 3. D.V.S. Moorthy, 'Transducers and Instrumentation', Prentice Hall of India Pvt Ltd, 2007.	UNIT - IV	STORAGE AND DISPLAY DEVICES	9								
 Classification of transducers – selection of transducers – resistive, capacitive and inductive transducers – piezo electric transducers – optical and digital transducers- Elements of data acquisition system – A/D, D/A converters – Smart sensors. TEXTBOOK 1. A.K. Sawhney, 'A Course in Electrical & Electronic Measurements & Instrumentation', Dhanpat Rai and Co, 2004. 2. Doebelin E.O. and Manik D.N., Measurement Systems – Applications and Design, Special Indian Edition, Tata McGraw Hill Education Pvt. Ltd., 2007. REFERENCES 1. H.S. Kalsi, 'Electronic Instrumentation', Tata McGraw Hill, II Edition 2004. 2. A.J. Bouwens, 'Digital Instrumentation', Tata McGraw Hill, 1997. 3. D.V.S. Moorthy, 'Transducers and Instrumentation', Prentice Hall of India Pvt Ltd, 2007. 	-) – LED, LCD and								
 electric transducers – optical and digital transducers- Elements of data acquisition system – A/D, D/A converters – Smart sensors. TEXTBOOK A.K. Sawhney, 'A Course in Electrical & Electronic Measurements & Instrumentation', Dhanpat Rai and Co, 2004. Doebelin E.O. and Manik D.N., Measurement Systems – Applications and Design, Special Indian Edition, Tata McGraw Hill Education Pvt. Ltd., 2007. REFERENCES H.S. Kalsi, 'Electronic Instrumentation', Tata McGraw Hill, II Edition 2004. A.J. Bouwens, 'Digital Instrumentation', Tata McGraw Hill, 1997. D.V.S. Moorthy, 'Transducers and Instrumentation', Prentice Hall of India Pvt Ltd, 2007. 	UNIT - V	TRANSDUCERS	9								
 A.K. Sawhney, 'A Course in Electrical & Electronic Measurements & Instrumentation', Dhanpat Rai and Co, 2004. Doebelin E.O. and Manik D.N., Measurement Systems – Applications and Design, Special Indian Edition, Tata McGraw Hill Education Pvt. Ltd., 2007. REFERENCES H.S. Kalsi, 'Electronic Instrumentation', Tata McGraw Hill, II Edition 2004. A.J. Bouwens, 'Digital Instrumentation', Tata McGraw Hill, 1997. D.V.S. Moorthy, 'Transducers and Instrumentation', Prentice Hall of India Pvt Ltd, 2007. 	electric transduc	ers – optical and digital transducers- Elements of data acquisition sys									
 2004. 2. Doebelin E.O. and Manik D.N., Measurement Systems – Applications and Design, Special Indian Edition, Tata McGraw Hill Education Pvt. Ltd., 2007. REFERENCES H.S. Kalsi, 'Electronic Instrumentation', Tata McGraw Hill, II Edition 2004. A.J. Bouwens, 'Digital Instrumentation', Tata McGraw Hill, 1997. D.V.S. Moorthy, 'Transducers and Instrumentation', Prentice Hall of India Pvt Ltd, 2007. 	TEXTBOOK										
Tata McGraw Hill Education Pvt. Ltd., 2007. REFERENCES 1. H.S. Kalsi, 'Electronic Instrumentation', Tata McGraw Hill, II Edition 2004. 2. A.J. Bouwens, 'Digital Instrumentation', Tata McGraw Hill, 1997. 3. D.V.S. Moorthy, 'Transducers and Instrumentation', Prentice Hall of India Pvt Ltd, 2007.	•	, 'A Course in Electrical & Electronic Measurements & Instrumentation', Dr	hanpat Rai and Co,								
 H.S. Kalsi, 'Electronic Instrumentation', Tata McGraw Hill, II Edition 2004. A.J. Bouwens, 'Digital Instrumentation', Tata McGraw Hill, 1997. D.V.S. Moorthy, 'Transducers and Instrumentation', Prentice Hall of India Pvt Ltd, 2007. 		• • • •	Indian Edition,								
 A.J. Bouwens, 'Digital Instrumentation', Tata McGraw Hill, 1997. D.V.S. Moorthy, 'Transducers and Instrumentation', Prentice Hall of India Pvt Ltd, 2007. 	REFERENCES										
	 A.J. Bouwens, D.V.S. Moorth 	'Digital Instrumentation', Tata McGraw Hill, 1997. y, 'Transducers and Instrumentation', Prentice Hall of India Pvt Ltd, 2007.	0.								

COURSE D	COURSE DESIGNERS											
Sl No	Name of the Faculty	Designation	Department	Mail ID								
1	D.Saranya	AP (Gr-II)	EEE	srnlekha@gmail.com								
2	Dr. P.Selvam	Professor	EEE	selvam@vmkvec.edu.in								
3	Dr. R. Sankarganesh	Associate Professor	EEE	sankarganesh@vmkvec.edu.in								

17EECC16	POWER ELECTRONICS AND DRIVES	Category	L	Т	Р	Credit
		СС	3	0	0	3

PREAMBLE

Power electronics deals with the processing and control of 'raw' electrical power from an electrical source such as an AC mains supply, a battery bank, a photovoltaic array, or a wind turbine into a form and quality suitable for a particular electrical load. It is an enabling technology with a very wide range of applications, such as a cell phone charger, a personal computer, a microwave oven, an MRI system, a hybrid electric car, or even the electrical grid. As can be noted, the power levels handled can vary from a few watts to several hundreds of megawatts. In this course, we will study the basic principles behind the power electronic circuits used in most such power processing applications. These circuits include power converters for DC to DC, DC to AC and AC to DC applications.

PREREQUISITE

Electronic Devices and Circuits

COUR	RSE OBJECTIVES								
1	To get an overview of different types of power semiconductor devices and their	switching characteristics.							
2	To understand the operation, characteristics and performance parameters of controlled rectifiers.								
3	To study the operation, switching techniques and basics topologies of DC-DC switching regulators.								
4	To learn the different modulation techniques inverters and to understand harmo	nic reduction methods.							
5	To study the operation of AC voltage controller.								
COUR	RSE OUTCOMES								
On th	On the successful completion of the course, students will be able to								
	CO1:The basic semiconductor physics to the properties of real power Remember semiconductordevices and differentiate from low power devices.								
	The concepts of operation of AC-DC converters in steady state and nt state of both continuous and discontinuous modes.	Understand							
CO3:C	Classify and design choppers for simple electrical application	Apply							
	dentify the proper gating sequence and control circuit in operating the single and three phase inverter circuits.	Analyze							
	CO5:Analyze the performance parameter, various techniques for analysis and design Analyze of AC voltage controller and also list the various control schemes in cycloconverter.								
CO6:D	CO6:Describe the concepts of electric machines . Understand								
	nplement the power electronics concepts to AC & DC drives to made the ve control.	Analyze							

MAP	PING V	WITH	PROC	GRAM	ME O	UTCC	MES	AND I	PROG	RAMM	E SPE	CIFIC (OUTCO	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М													
CO2	S	S	М												
CO3	S														
CO4	S		S		S										
CO5					S										
CO6		S	М												
CO7		М	М		М										
Overv simula UNIT Introd and ste	ution of - II : 1 uction-	switch PE cir RECT 2 pulse hopper	ing dev cuits. IFIER e / 3 pu – Time	vices – S & C Ilse and e ratio d	Drive HOPP d 6 pul control	r and s ERS se con and cu	nubber verters irrent l	r circui – Dua imit co	l conv	erters. E	9 Basic Pri	O, IGB		FET – C pers - S erters.	
Single		and th	hree pl	hase [1	20°&				ers – P	WM tee	chnique	-	-	PWM, N	Modifie
Single	phase	AC vo	ltage c	ontroll	ers – N	Iultista	ige seq	uence	control	– single	e phase a	and thre	e phase	cyclocor	verter.
Туре	s — 1	lectrica	l Dri	ves –	Selec					U		ction –		g and ting –	
Advar	ntages ion m	of so	lid sta	ate dr	ives -	- D.C	. mot	or con	ntrol ı	-	ectifiers	and o		s – co d A.C.	
	Hours BOO														
				ectroni Delhi		cuits, E	Devices	and A	pplicat	tions", P	rentice	Hall			

- India, 3rd Edition, New Delhi, 2004.
- 2. G.K. Dubey "Fundamental Electrical Drives" second edition 2002, Narosa Publications,

Second edition, 2002.

REFERENCES:

1. Cyril.W.Lander, "Power Electronics", McGraw Hill International, Third Edition, 1993.

2. P.S.Bimbra "Power Electronics", Khanna Publishers, third Edition 2003.

3. Philip T.Krein, "Elements of Power Electronics" OxfordUniversity Press, 2004Edition.

4. N.K.De., P.K.Sen "Electric Drives", Prentice Hall, First edition 1999.

5. Pillai, S.K., "A First course on Electrical Drives", Wiley Eastern Ltd., New Delhi, 1982

S.No.	Name of the Faculty	Mail ID
1	Mr.A.BALAMURUGAN	balamurugan345@gmail.com

ELECTRONICS AND COMMUNICATION ENGINEERING -OPEN ELECTIVE

17ECCC07	MICROCONTROLLERS & ITS	Category	L	Т	Р	Credit	
1120000	APPLICATIONS	CC	3	0	0	3	

PREAMBLE

Microcontroller is used as the main controller in most of the embedded systems nowadays. Due to the development in VLSI technology, microcontrollers evolve which function similar to microprocessors but they have most of the peripherals built on-chip. This course makes the students to be familiar with the architecture and programming of Microcontrollers. This course also introduces the architecture and hardware features of PIC 16F877 and ARM7 (LPC2148) microcontrollers.

PREREQUISITE -

COURSE OBJECTIVES

1 To learn the concepts of microprocessors and knowledge of interfacing devices.

- 2 To study the Architecture of 8051 microcontroller
- 3 To develop skill in simple program writing of microcontroller
- 4 To study the interfacing and applications of microcontroller
- 5 To study the advanced microcontrollers.

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1. Explain the concept of microprocessor and interfacing devices.	Understand
CO2. Explain the architecture and function of 8051 microcontroller	Apply
CO3. Design and implement programs on 8051 Microcontroller	Analyze
CO4. Design and implement applications using 8051 Microcontroller	Analyze
CO5. Explain the advanced Microcontrollers used in different applications.	Understand

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO	PO	PO	PO	PO	PO0	PO0	PO0	PO0	PO	PO1	PO	PS	PS	PS
	1	2	3	4	5	6	7	8	9	10	1	12	01	O2	O3
CO1	S	L	L	-	L	-	-	-	-	-	-	М	-	-	-
CO2	L	S	S	-	Μ	-	-	-	-	-	-	M	-	-	-
CO3	S	Μ	Μ	-	L	М	-	-	-	-	-	М	-	-	-
CO4	S	L	L	-	L	S	-	-	-	-	-	Μ	-	-	-
CO5	Μ	Μ	S	-	Μ	L	-	-	-	-	-	М	-	-	-
S- Str	ong; N	1-Med	ium; L	-Low											

INTEL 8086 MICROPROCESSOR & I/O INTERFACING

Introduction to 8086 - Architecture of 8086 - Register organization – Signal Description of 8086 - Addressing modes – Data Transfer Instruction – Arithmetic Instruction - Branching Instruction - Program Transfer Instruction – simple programs- Programmable Peripheral Interface 8255 – Programmable Communication Interface 8251 USART – Programmable Interrupt Controller 8259A – Direct Memory Access Controller 8257- Programmable Interval Timer 8253 – Keyboard/Display Controller 8279.

INTEL 8051 MICROCONTROLLER

Introduction to 8 bit microcontroller – architecture of 8051- Signal descriptions of 8051- Role of PC and DPTR- Flags and PSW- CPU registers- Internal RAM & ROM- Special Function Register-Counter & Timers- Serial Communication.

ASSEMBLY LANGUAGE PROGRAM OF INTEL 8051

Interrupt- Addressing Mode- Data Transfer Instruction- Arithmetic Instruction- Logical Instruction-Jump Loop & Call Instruction- I/O Port Programming.

INTERFACING AND APPLICATION OF INTEL 8051

LCD Interfacing - A/D and D/A Interfacing- Sensor Interfacing- Relays and Optoisolators- Stepper Motor Interfacing- DC Motor Interfacing.

ADVANCED MICROCONTROLLERS

PIC 16F877 microcontroller – Architecture On chip ADC, I²C – SPI – Watchdog timer – ARM7 (LPC2148) microcontroller – Architecture and applications.

TEXTBOOKS

- 1. Muhammad Ali Mazidi and Janica Gilli Mazidi, The 8051 microcontroller and embedded systems, Pearson Education, 5th Indian reprint, 2003.
- 2. Frank D. Petruzella. "Programmable Logic Controllers", McGraw–Hill Book, Company, 1989

REFERENCE BOOKS

- 1. B.P. Singh, Microprocessors and Microcontrollers, Galcotia Publications (P) Ltd, First edition, New Delhi, 1997.
- 2. Embedded Controller Hand book, Intel Corporation, USA.
- 3. Microcontroller Hand Book, INTEL, 1984.
- 4. Ajay V.Deshmukh, "Microcontrollers- Theory and applications", Tata McGraw-Hill, publisher,2005.

1	Mr.S.Selvam	selvam@avit.ac.in
2	Mr.R.Ramani	ramani@vmkvec.edu.in

	3	3	Mr.G.Sureshkumar	sureshkumar@vmkvec.edu.in
--	---	---	------------------	---------------------------

		Ι			-	IINGS FO)R	Cate	egory	L		Т	Р	Cr	edit
17EC	CC18			ELEC	TRON	NICS				-		0	0		<u> </u>
									² C	3		0	0		3
PREA	MBLE														
-	-				-	knowledg			•						•
						ong other							overviev	v (bui	lding
				, healtl	icare, 1	industry, e	etc.) wi	th a foc	us on w	earable	e elec	tronics			
PRER	REQUIS	ITE	-												
COUI	RSE OB														
1			ng of I	oT val	ue chai	in structur	e (dev	ice, data	a cloud),	applic	ation	areas a	nd techi	nologi	es
2	involve Unders		IoT set	nsors a	nd teck	nnological	challe	enges fa	ced by I	oT dev	ices	with a f	ocus on	wire	655
	energy,	, pow	er, RF	and se	nsing i	nodules				or dev	1005,	with a i	ocus on	wite	035,
3						with a foc									
4	Explore Pi	e and	learn a	about I	nternet	t of Thing	s with	the help	of prep	aring p	orojec	ts desig	ned for	Raspl	berry
5		ly the	advan	ced in	ernet c	of things f	or elec	tronics							
						-									
COUI	RSE OU	тсо	OMES												
On the	success	ful co	omplet	ion of	the cou	ırse, stude	ents wi	ll be abl	e to						
			Ĩ			Things.					τ	Jndersta	nd		
	Explain		-			e						Apply			
CO3.]	Design a	nd in	npleme	ent of 1	echnol	logical se	ensors				A	Analyze			
			-			ns using in		t of thin	gs		A	Analyze			
CO5.]	Explain	the ac	dvance	d inter	net of t	hings us	ed in d	lifferent	applica	tions.	U	Jndersta	ind		
MAPI	PING W	ITH	PRO	GRAM	ME O	UTCOM	IES AI	ND PRO	OGRAN	IME S	SPEC	IFIC O	UTCO	MES	
COS	PO1	PO	PO3	PO4	PO5	PO06 1	PO07	PO08	PO09	PO1	РО	PO12	PSO1	PS	PS
		2								0	11			O2	03
CO1	S	L	L	-	L	-	-	-	-	-	-	M	-	-	-
CO2	L	S	S	-	M	-	-	-	-	-	-	M	-	-	-
CO3	S	Μ	M	-	L	M	-	-	-	-	-	M	-	-	-
CO4	S	L	L	-	L	S	-	-	-	-	-	М	-	-	-
CO5	М	Μ	S	-	Μ	L	-	-	-	-	-	Μ	-	-	-
	ong; M-N	Mediu	ım; L-l	Low											
	ABUS														
	ODUCI					_									
Interne	et of Th	nings	Promi	ses-D	efinitio	on-Scope-	-Senso	rs for l	oT App	olicatio	ns-S	tructure	of IoT	'–IoT	Map

Device

SEVEN GENERATIONS OF IOT SENSORS TO APPEAR

Industrial sensors –Description & Characteristics–First Generation –Description & Characteristics– Advanced Generation –Description & Characteristics–Integrated IoT Sensors –Description & Characteristics–Polytronics Systems –Description & Characteristics–Sensors' Swarm –Description & Characteristics–Printed Electronics –Description & Characteristics–IoT Generation Roadmap

TECHNOLOGICAL ANALYSIS

Wireless Sensor Structure-Energy Storage Module-Power Management Module-RF Module-Sensing Module

IOT DEVELOPMENT EXAMPLES

ACOEM Eagle – EnOcean Push Button – NEST Sensor – Ninja Blocks - Focus on Wearable Electronics

PREPARING IOT PROJECTS

Creating the sensor project -Preparing Raspberry Pi -Clayster libraries -Hardware-Interacting with the hardware -Interfacing the hardware-Internal representation of sensor values -Persisting data -External representation of sensor values -Exporting sensor data -Creating the actuator project-Hardware -Interfacing the hardware -Creating a controller -Representing sensor values -Parsing sensor data -Calculating control states -Creating a camera -Hardware -Accessing the serial port on Raspberry Pi -Interfacing the hardware - Creating persistent default settings -Adding configurable properties -Persisting the settings -Working with the current settings -Initializing the camera

REFERENCE BOOKS

- 1. Dr. Guillaume Girardin , Antoine Bonnabel, Dr. Eric Mounier, 'Technologies & Sensors for the Internet of Things Businesses & Market Trends 2014 -2024', Yole Développement Copyrights ,2014
- 2. Peter Waher, 'Learning Internet of Things', Packt Publishing, 2015
- 3. Editors OvidiuVermesan Peter Friess,'Internet of Things From Research and Innovation to Market
- 4. Deployment', River Publishers, 2014
- 5. N. Ida, Sensors, Actuators and Their Interfaces, Scitech Publishers, 2014.

COU	RSE DESIGNERS	
1	Mr.G.Ramachandran	ramachandrang@vmkvec.edu.in
2	Mr.R.Ramani	ramani@vmkvec.edu.in
3	Mr.G.Sureshkumar	sureshkumar@vmkvec.edu.in

17FC	EC06		МІ	TMS &	SEN	SORS		Cate	gory	L	1	Т	P	C	redit
17EC.	LCUU		1411		C DEIN	50165		E	С	3		0	0		3
PREA	MBL	E													
buoya apprec combi	nt secto ciate a ination	or. Sm nd par of ME	art ME rticipat MS an	EMS ar the in the ad integrated	nd Sens the de grated i	onized the sor Syste velopment intelligen ent when	to the second se	sents rea the field been pu	aders w d, fron t forwa	rith the n a un rd as a	e mear nique disru	ns to ur systen ptive te	iderst ns pe echno	and, ev erspectiv logy. T	aluate, ve.The he full
PREF	REQUI	SITE	- NIL												
COU	RSE O	BJEC	TIVES	5											
1	Under needs		the fun	damen	ital con	cept of N	MEMS :	and their	r releva	nce to	currei	nt indus	stry/sc	cientific	;
2	Gain	the phy	ysical k	nowle	dge un	derlying	the ope	ration p	rinciple	es and o	design	of mic	rosys	tems;	
3	Build	an uno	derstan	ding of	f micro	scale phy	ysics fo	r use in	designi	ng ME	EMS a	pplicati	ons		
4	Unde	rstand	the bas	ic prin	ciples	of MEM	S senso	rs and a	ctuators	s (mecl	hanica	ıl, elect	rical,		
	piezo	resistiv	ve, piez	oelecti	ric, the	rmal, mio	crofluid	ic)							
5	•	-				ic MEM	S devic	e, such a	as an in	ertia se	ensor	(accele	romet	er), giv	en a
	fabric	ation p	process	descri	ption.										
COUI	RSE O	UTCC	OMES												
On the	e succe	ssful c	omplet	ion of	the cou	ırse, stud	ents wi	ll be abl	e to						
CO1.	Knowl	edge of	n the b	asics o	f MEM	IS and m	echanic	es for M	EMS D	esign			Und	erstand	
		11				dge of M		differe	nt field	S			App		
						plication							App		
	Use co ical qua	-	in com	nmon n	nethods	s for conv	verting	a physic	al para	meter i	into ar	1	App	ly	
	•	•													
		differe	ent type	e of ser	nsors u	sed in rea	al life a	pplicatio	ons and	parapl	nrase t	heir	Crea	te	
impor	tance														
MAP	PING	WITH	PRO	GRAM	IME O	UTCON	AES AI	ND PRO	OGRAI	MME	SPEC	CIFIC (OUTO	COME	5
COS	PO1	PO2	PO3	PO4	PO5	PO06	PO07	PO08	PO09	PO10	PO1 1	PO12	PSO 1	PSO2	PSO3
CO1	S	L	L	-	L	-	-	-	-	-	-	М	L	-	-
CO2	S	S	М	М	М	_	_	_	-	_	-	М	М	-	-
CO3	S	S	М	М	L	М	-	-	-	-	-	М	М	-	-
CO4	S	S	S	-	L	S	-	-	-	-	-	М	L	Μ	-

CO5	S	М	S	S	S	S	М	-	-	-	-	Μ	М	М	-
S- Stro	ong; M	-Mediu	ım; L-l	Low											

OVERVIEW AND INTRODUCTION Introduction to Design of MEMS, Overview of Micro electromechanical Systems, Materials for MEMS: Silicon, silicon compounds, polymers, metals ,Micro fabrication, Micromachining: Bulk Micromachining, Surface Micromachining, High Aspect-Ratio (LIGA and LIGA-like) Technology; Packaging: Microsystems packaging, Essential packaging technologies, Selection of packaging materials

MECHANICS FOR MEMS DESIGN Elasticity, Stress, strain and material properties, Bending of thin plates, Spring configurations, torsional deflection, Mechanical vibration, Resonance, Thermo mechanics – actuators, force and response time, Fracture and thin film mechanics.

MEMS APPLICATION Case studies – Capacitive accelerometer, Peizo electric pressure sensor, Microfluidics application, Modeling of MEMS systems, CAD for MEMS.

INTRODUCTION AND DISPLACEMENT MEASUREMENT Sensors - Basic requirements of a sensors- Classification of sensors- Static and Dynamic characteristics of sensors- Displacement Sensors-Linear and Rotary displacement sensors-Potentiometer, Capacitive and Inductive type displacement sensor-position sensors- Optical encoder, Photoelectric sensor, Hall Effect Sensor.

MICRO SENSORS AND ACTUATORS Micro Sensors: Principles and examples, Force and pressure micro sensors, position and speed micro sensors, acceleration micro sensors, chemical sensors, biosensors, temperature micro sensors and flow micro sensors. Micro Actuators: Actuation principle, shape memory effects-one way, two way and pseudo elasticity. Types of micro actuators- Electrostatic, Magnetic, Fluidic, Inverse piezo effect, other principles.

Text Books

N. P. Mahalik, "MEMS", Tata McGraw hill, Sixth reprint, 2012.
 Stephen Santeria," Microsystems Design", Kluwer publishers, 2000.

3.Sensor & transducers, D.Patranabis, 2nd edition, PHI

Reference Books

Nadim Maluf," An introduction to Micro electro mechanical system design", ArtechHouse, 2000.
 Mohamed Gad-el-Hak, editor," The MEMS Handbook", CRC press Baco Raton, 2000.

3.. Tai Ran Hsu," MEMS & Micro systems Design and Manufacture" Tata McGraw Hill, New Delhi, 2002. Liu, "MEMS", Pearson education, 2007

4. Instrument transducers, H.K.P. Neubert, Oxford University press.

1 Mrs.A.Malarvizhi malar.ece06@gmail.com
--

INDUSTRIAL ELECTIVES

1 7 7/	EP10.	2	NOIG	F VID	D Л ТТ	N 9. T	IARSHN	VECC	C	ategory	7	L	Т	Р	Credit
1/101	EP10.	3	NUIS		KAII	JN & F	1AK5HI	NE33		PI		3	0	0	3
	ourse	reviev													given to brations.
PREF NIL	REQU	ISITE	2												
COU	RSE O)BJE(CTIVI	ES											
1	To ir	ntrodu	ce sou	rce of n	ioise ai	nd vibra	ition								
2	To b	roader	n the u	ndersta	nding	of sound	d measur	rement	and hu	ıman se	ensitivit	y			
3	To u	nderli	ne the	importa	ance of	simula	tion, ane	choic c	hambo	er and a	coustic	hologra	phy		
4	To b	roader	n the ir	nportar	nce of s	statistic	al and fre	equency	y analy	ysis					
5	To ir	ntrodu	ce acti	ve cont	rol tec	hniques									
COUI	RSE C	OUTC	OME	S											
On the	e succe	essful	compl	etion of	f the co	ourse, st	udents w	ill be a	ble to						
CO1.]	dentif	y sour	ces of	noise a	nd vib	ration									
CO2.	Measu	ire sou	ind int	ensity a	and hu	man ser	sitivity								
CO3.	Apply	meth	ods to	model	the adv	anced a	acquisitio	on tech	niques						
CO4.1	Evalua	te acti	ve cor	ntrol tec	chnique	es									
CO5.	Identi	fy and	evalu	ate the	automo	otive no	ise sourc	ces							
MAP	PING	WITI	H PR(OGRAN	MME	OUTC	OMES A	ND PI	ROGI	RAMM	E SPE	CIFIC	OUTC	COMES	5
COS	PO 1	PO 2	PO 3	PO4	PO 5	PO6	PO7	PO8	PO 9	PO1 0	PO1 1	PO12	PS O1	PSO 2	PSO3
CO1	S	М	М	L		L	L						М		
CO2	S	М	М	М	М	L	L						М		
CO3	S	S	S	S	S	М	М	-	1				М		
CO4	S	S	S	S	S	М	М						М		
CO5	S	S	S	S	S	S	S						М		
S- Str	ong; N	A-Me	dium;	L-Low	V										

BASICS OF VIBRATION ANALYSIS: Basic Concepts, Formulating the Equations of Motion, Free Undamped Vibrations- Free Damped Vibrations - Logarithmic Decrement, Forced Vibrations, Magnification Factor - Torsional System Characteristics, Single Disc And Two Disc- Two Degree of Freedom Systems under Harmonic Force, Modal Analysis- Coordinate Coupling.

NVH IN THE AUTOMOTIVE INDUSTRY: Sources of noise and vibration. Design features. Common problems. Marque values. Noise quality. Pass-by noise requirements. Target vehicles and objective targets. Development stages in a new vehicle programme and the altering role of NVH engineers.

SOUND AND VIBRATION THEORY: Sound measurement. Human sensitivity and weighting factors. Combining sound sources. Acoustical resonances. Properties of acoustic materials. Transient and steady state response of one degree of freedom system applied to vehicle systems. Transmissibility. Modes of vibration.

NVH MEASUREMENTS: Vibration and Noise Standards – Pass/Drive by Noise-Test Site- Meteorological Condition-Constant Speed Test- Wide Open Throttle Test - Interior Noise Test- Standards – Test Track Condition – Vehicle Operating Condition –Steady Speed – Full Throttle Test –Stationery Test- Microphone Positions.- Stationery Vehicle Test- Standards- Test Site- Preparation of The Vehicle-Vehicle Operating Condition.- NVH Measurement Tools And Techniques- Vibration and Noise Measurement Transducers.- Advanced Acquisition Techniques.

AUTOMOTIVE NOISE SOURCES AND CONTROL TECHNIQUES: Methods for Control of Engine Noise-Control Measures- Mufflers, Transmission Noise- Control Methods.- Intake And Exhaust Noise – Attenuation Of Intake and Exhaust Noise- Dissipative Silencers – Reactive Silencers – Resonators - Aerodynamic Noise, Its Sources And Control Methods- Tire Noise And Their Control Methods, Brake Noise.- Noise Control Strategy, Noise Control At Source.- Noise Control Along The Transmission Path- Barriers, Enclosures, Resonators.

TEXT BOOKS:

1. Singiresu S. Rao, "Mechanical Vibrations" 5th Edition, Pearson, September, 2010

- 2. Ambekar, A. G., "Mechanical Vibrations and Noise Engineering", Prentice Hall of India, New Delhi, 2006
- 3. Manasi P. Joshi, "Noise & Vibration Measurement Techniquesin Automotive NVH"2012

REFERENCES:

1. Beranek, L. L. and Ver, I, L., "Noise and Vibration Control Engineering –Principles and Application", John Wiley & Sons, Inc, 1992.

2. Malcolm J. Crocker, "Handbook of Noise and Vibration Control" John Wiley & Sons, Inc 2007

S.No ·	Name of the Faculty	Designation	Department / Name of the College	Mail ID
1	SHIVAKUMAR N	Asst. Prof II	Mechanical, AVIT	shiva.thermal@gmail.com

17	MEP104	1	NO	N-DES				Cat	egory	L		Т	Р	Cre	edit
		•		TES	TING]	PI	3		0	0		3
				he vari	ious N	Non De	estruc	tive E	valuat	ion and	l Testi	ng me	thods, the	eory and	d their
	equisite														
Cour	se Obje	ctive													
1	To exp	ose to t	he conc	ept of o	overvi	ew of N	IDT								
2	To fam	iliarize	with th	e applio	cation	sof diffe	erenti	al equ	ations,	surfac	e NDE	Metho	ds		
3	To und	erstand	the cor	cept of	therr	nograpl	hy an	d Edd	y curre	nt testi	ng				
4	To und	erstand	the cor	ncept of	ùltra	sonic te	esting	and a	acousti	c emiss	ion				
5	To und	erstand	the cor	ncept of	Radi	ograph	у (RT	.)							
Cour	se Outc	omes: (On the	success	sful co	mpleti	on of	the co	ourse,	studen	ts will	be abl	e to		
CO1.		•	concept											Ap	ply
CO2.			ze with	11					•		ace NE	DE Met	thods	Under	
CO3.	Expla	in the o	concept	of the	rmogra	aphy an	nd Ed	dy cur	rent te	sting				Under	rstand
CO4.	Expla	ain the	concept	of ult	casonio	c testing	g and	lacous	stic em	ission				Under	rstand
CO5.	Expla	ain the	concept	of Rad	diogra	phy (R'	T)							Under	rstand
Марј	ping wit	h Prog	ramme	Outco	mes a	nd Pro	gran	nme Sj	pecific	Outco	mes				
CO	PO 1	PO2	PO3	PO4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1	$2 \begin{array}{ c } PSO \\ 1 \end{array}$	PSO 2	PSO 3
CO1	S	L	L	S	S	М							L		
CO2	s s	М	L	S	S	М							L		
CO3	S	S	L	М	S	М							L		
CO4	S	М	L	М	S	М							М		
CO5	S	М	М	М	S	М							М		
S- Sti	rong; M	-Mediu	ım; L-I	Low	<u>.</u>	, I									<u>.</u>

OVERVIEW OF NDT

NDT Versus Mechanical testing, Overview of the Non Destructive Testing Methods for the detection of manufacturing defects as well as material characterization. Relative merits and limitations, Various physical characteristics of materials and their applications in NDT., Visual inspection – Unaided and aided

SURFACE NDE METHODS

Liquid Penetrants Testing – Principles, types and properties of liquid penetrants, developers, advantages and limitations of various methods, Testing Procedure, Interpretation of results. Magnetic Particle Testing- Theory of magnetism, inspection materials Magnetisation methods, Interpretation and evaluation of test indications, Principles and methods of demagnetization, Residual magnetism.

THERMOGRAPHY AND EDDY CURRENT TESTING

Thermography- Principles, Contact and non contact inspection methods, Techniques for applying liquid crystals, Advantages and limitation – infrared radiation and infrared detectors, Instrumentations and methods, applications.Eddy Current Testing-Generation of eddy currents, Properties of eddy currents, Eddy current sensing elements, Probes, Instrumentation, Types of arrangement, Applications, advantages, Limitations, Interpretation/Evaluation.

ULTRASONIC TESTING (UT) AND ACOUSTIC EMISSION (AE)

Ultrasonic Testing-Principle, Transducers, transmission and pulse-echo method, straight beam and angle beam, instrumentation, data representation, A/Scan, B-scan, C-scan. Phased Array Ultrasound, Time of Flight Diffraction. Acoustic Emission Technique –Principle, AE parameters, Applications

RADIOGRAPHY (RT)

Principle, interaction of X-Ray with matter, imaging, film and film less techniques, types and use of filters and screens, geometric factors, Inverse square, law, characteristics of films – graininess, density, speed, contrast, characteristic curves, Penetrameters, Exposure charts, Radiographic equivalence. Fluoroscopy- Xero-Radiography, Computed Radiography, Computed Tomography

Text Books

1. Baldev Raj, T.Jayakumar, M.Thavasimuthu "Practical Non-Destructive Testing", NarosaPublishing House. 2.RaviPrakash, "Non-Destructive Testing Techniques", 1st revised edition, New Age International Publishers.

Reference Books

1.ASM Metals Handbook,"Non-Destructive Evaluation and Quality Control", American Society of Metals, Metals Park, Ohio, USA, 200, Volume-17.

2.Paul E Mix, "Introduction to Non-destructive testing: a training guide", Wiley, 2nd Edition New Jersey 3.Charles, J. Hellier," Handbook of Nondestructive evaluation", McGraw Hill, New York.

Course Designers

S.No	Faculty Name	Designation	Department/ Name of the College	Email id
1	S.ASHOKKUMAR	Asst.Professor G-II	Mech / Avit	Ashokkumar@avit.ac.in

CO POI 2 3 4 5 6 7 8 9 0 1 POI2 1 2 CO1 S L	78.461	D105		CO	AL M	ININ	G AN	D	Ca	ategory	y i	L	Т	Р	Cr	edit	
This course enable the students to understand the various mining methods, methods of gasification is design of various machineries. Prerequisite To understand the various advanced methods of coal mining 3 To understand basic mining using hydraulies 4 To understand the concept of different conditions of mining 5 To understand the concept of different conditions of mining 5 Understand the gasification of underground coal mines Course Outcomes: On the successful completion of the course, students will be able to CO1. Understand the basic concept of coal mining and types Understand CO2. Understand the basic requirements, equipments and machinery for mining operation Understand CO3. Understand the basic requirements, equipments and machinery for mining operation Analyze CO4. Apply the Concepts, Methodology, Mining techniques appropriate for the field Analyze Malyze the failure modes, Process, safety and criticality in design of underground mines CO2 PO1 PO PS PO PI PI <	/MEF	105		M	ECHA	NIZA	TIO	N		PI		3	0	0	í	3	
1 To introduce the recent trends of level of mechanisation for coal face 2 To understand the various advanced methods of coal mining 3 To understand basic mining using hydraulics 4 To understand the concept of different conditions of mining 5 To understand the gasification of underground coal mines Course Outcomes: On the successful completion of the course, students will be able to CO1. Understand the basic concept of coal mining and types Understand CO2. Understand the basic requirements, equipments and machinery for mining operation Understand CO3. Understand the failure modes, Process, safety and criticality in design of underground mines Analyze Mapping with Programme Outcomes and Programme Specific Outcomes M 2 CO1 S L I M CO2 S S M S S	s cour ign of r equi s	rse ena vario				unde	rstand	the va	rious 1	mining	metho	ods, me	thods of	gasifica	tion and	l	
2 To understand the various advanced methods of coal mining 3 To understand basic mining using hydraulics 4 To understand the concept of different conditions of mining 5 To understand the gasification of underground coal mines Course Outcomes: On the successful completion of the course, students will be able to CO1. Understand the basic concept of coal mining and types Understand CO2. Understand the problems faced during mining operation from past experiences Understand the basic requirements, equipments and machinery for mining operation Understand the problems faced during mining operation from past experiences CO3. Understand the basic requirements, equipments and machinery for mining operation Understand the problems faced during mining operation from past experiences Apply CO4. Apply the Concepts, Methodology, Mining techniques appropriate for the field Apply Analyze CO5. Analyze the failure modes, Process, safety and criticality in design of underground mines Analyze Mail 2 CO1 S L I I I Mail 2 CO2 S S M S S I I Mail 2 CO3 S L I I </td <td>ırse C</td> <td>Object</td> <td>ive</td> <td></td>	ırse C	Object	ive														
3 To understand basic mining using hydraulics 4 To understand the concept of different conditions of mining 5 To understand the gasification of underground coal mines Course Outcomes: On the successful completion of the course, students will be able to CO1. Understand the basic concept of coal mining and types Understand CO2. Understand the problems faced during mining operation from past experiences Understand the basic requirements, equipments and machinery for mining operation Understand CO3. Understand the basic requirements, equipments and machinery for mining operation Understand Apply CO4. Apply the Concepts, Methodology, Mining techniques appropriate for the failure modes, Process, safety and criticality in design of underground mines Analyze Mapping with Programme Outcomes and Programme Specific Outcomes CO1 S L I <td< td=""><td>То</td><td>introd</td><td>uce th</td><td>ne rece</td><td>nt tren</td><td>nds of</td><td>level o</td><td>of mec</td><td>hanisa</td><td>tion fo</td><td>r coal</td><td>face</td><td></td><td></td><td></td><td></td></td<>	То	introd	uce th	ne rece	nt tren	nds of	level o	of mec	hanisa	tion fo	r coal	face					
4 To understand the concept of different conditions of mining 5 To understand the gasification of underground coal mines Course Outcomes: On the successful completion of the course, students will be able to CO1. Understand the basic concept of coal mining and types Understand CO2. Understand the problems faced during mining operation from past experiences Understand CO3. Understand the basic requirements, equipments and machinery for mining operation Understand CO4. Apply the Concepts, Methodology, Mining techniques appropriate for the field Apply CO5. Analyze the failure modes, Process, safety and criticality in design of underground mines Analyze Mapping with Programme Outcomes and Programme Specific Outcomes CO2 S L L L M CO2 S S M S S M M	То	unders	stand	the va	rious a	advanc	ced me	ethods	of coa	l minir	ng						
To understand the gasification of underground coal mines Course Outcomes: On the successful completion of the course, students will be able to CO1. Understand the basic concept of coal mining and types Understand Understand the basic concept of coal mining and types Understand CO1. Understand the problems faced during mining operation from past Understand Understand the basic requirements, equipments and machinery for mining operation Understand CO3. Understand the basic requirements, equipments and machinery for mining operation Understand CO3. Understand the basic requirements, equipments and machinery for mining operation Apply the Concepts, Methodology, Mining techniques appropriate for the field Apply the Concepts, Methodology, Mining techniques appropriate for the field Analyze Manalyze the failure modes, Process, safety and criticality in design of underground mines Malyze Mapping with Programme Outcomes and Programme Specific Outcomes CO PO1 PO PO PO PO I M <th colspan<="" td=""><td>То</td><td>under</td><td>stand</td><td>basic</td><td>mining</td><td>g using</td><td>g hydra</td><td>aulics</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th>	<td>То</td> <td>under</td> <td>stand</td> <td>basic</td> <td>mining</td> <td>g using</td> <td>g hydra</td> <td>aulics</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	То	under	stand	basic	mining	g using	g hydra	aulics								
Ourse Outcomes: On the successful completion of the course, students will be able to CO1. Understand the basic concept of coal mining and types Understand CO2. Understand the problems faced during mining operation from past experiences Understand CO3. Understand the basic requirements, equipments and machinery for mining operation Understand CO4. Apply the Concepts, Methodology, Mining techniques appropriate for the field Apply CO5. Analyze the failure modes, Process, safety and criticality in design of underground mines Analyze Mapping with Programme Outcomes and Programme Specific Outcomes CO1 S L Image: Sign of the sign of	То	unders	stand	the co	ncept	of diff	erent of	condit	ions of	minin	g						
CO1. Understand the basic concept of coal mining and types Understand types Understand the problems faced during mining operation from past experiences Understand CO2. Understand the problems faced during mining operation from past experiences Understand Understand CO3. Understand the basic requirements, equipments and machinery for mining operation Understand CO3. Understand the basic requirements, equipments and machinery for mining operation Understand CO4. Apply the Concepts, Methodology, Mining techniques appropriate for the field Apply CO5. Analyze the failure modes, Process, safety and criticality in design of underground mines Analyze Mapping with Programme Outcomes and Programme Specific Outcomes M 2 CO1 S L I I I 2 CO2 S S M S S I I I I CO2 S S M S S I I I I I I CO2 S S M S S I I I I I I I I I	То	unders	stand	the ga	sificat	ion of	under	groun	d coal	mines							
CO2. Understand the problems faced during mining operation from past experiences Understand the problems faced during mining operation from past experiences Understand the problems faced during mining operation from past experiences Understand the problems faced during mining operation from past experiences Understand the basic requirements, equipments and machinery for mining operation Understand CO3. Understand the basic requirements, equipments and machinery for mining operation Understand Understand CO4. Apply the Concepts, Methodology, Mining techniques appropriate for the field Apply Analyze CO5. Analyze the failure modes, Process, safety and criticality in design of underground mines Analyze Mapping with Programme Outcomes and Programme Specific Outcomes Analyze CO1 S L Image: Sign of the	urse C	Outcon	nes: (On the	succe	essful	comp	letion	of the	course	e, stud	ents w	ill be abl	le to			
CO2. experiences Image: constraint of the basic requirements, equipments and machinery for mining operation Understand CO3. Understand the basic requirements, equipments and machinery for mining operation Understand CO4. Apply the Concepts, Methodology, Mining techniques appropriate for the field Apply CO4. Analyze the failure modes, Process, safety and criticality in design of underground mines Analyze Mapping with Programme Outcomes and Programme Specific Outcomes Mail Poli POli PSO PSO CO1 S L Image: Sign of the sig	1.	Under	stand	the ba	sic co	ncept	of coa	l mini	ng and	types				Under	stand		
CO3. operation CO4. Apply the Concepts, Methodology, Mining techniques appropriate for the field Apply CO5. Analyze the failure modes, Process, safety and criticality in design of underground mines Analyze Mapping with Programme Outcomes and Programme Specific Outcomes Analyze CO PO1 PO PO PO PO PO PO PO PO Image: Point of the field Mining techniques appropriate for the field Manalyze Mapping with Programme Outcomes and Programme Specific Outcomes Mapping Point of field PO1					oblem	s face	d durii	ng mir	ning op	eration	n from	past		Under	stand		
CO4.fieldImage: FieldImage: FieldImage: FieldCO5.Analyze the failure modes, Process, safety and criticality in design of underground minesAnalyzeMapping with Programme Outcomes and Programme Specific OutcomesPO1 PO1 2PO 3PO 4PO 5PO 6PO 7PO 8PO1 	2			the ba	sic rec	quirem	nents, e	equipn	nents a	and mad	chiner	y for m	ining	Under	stand		
underground mines Mapping with Programme Outcomes and Programme Specific Outcomes CO PO1 PO PO </td <td>4. ₁</td> <td>field</td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>•</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	4. ₁	field		-					-	•							
CO PO1 PO PO <t< td=""><td></td><td></td><td></td><td></td><td></td><td>es, Pro</td><td>ocess,</td><td>safety</td><td>and cr</td><td>riticalit</td><td>y in de</td><td>esign of</td><td>-</td><td>Analy</td><td>ze</td><td></td></t<>						es, Pro	ocess,	safety	and cr	riticalit	y in de	esign of	-	Analy	ze		
CO PO1 2 3 4 5 6 7 8 9 0 1 PO12 1 2 CO1 S L	pping	g with	Prog	ramm	e Out	comes	and l	Progra	amme	Specif	ic Out	tcomes					
CO1 S L I I I I I I M CO2 S S M S S S I I M CO3 S L L I I I I I I M	0	PO1											PO12		PSO 2	PSO 3	
CO2 S S M S S S I I M CO3 S L L I I I I I I M	D1	S		5	4	5	0	/	0	9	0	1		-	2	5	
CO3 S L L Image: Cost of the second se				м	S		S							M			
					5		5							М			
				L										М			
)4	S	М		L			M									
CO5 S S S M L S S M)5	S	S	S	Μ	L	S	S						M			
S- Strong; M-Medium; L-Low	Strong	g; M-N	Aediu	ım; L-	Low												

COAL FACE MECHANISATION

Introduction to Coal mining - Recent Trends, mechanised board and pillar mining, case studies.

MINING OF THICK SEAMS

Problems, past experiences in India, current methods, mining of thick, contiguous, and steep seams

HYDRAULIC MINING

Applicability, operating parameters, equipment, layouts, Indian experience. Computer applications such as remote control and environmental monitoring in hydraulic mining.

LONGWALL MINING

Powered supports, development of powered supports, their types and designs, selection for different conditions, last drivages for longwall panelling, remotely operated powered support and longwall faces, Indian experiments, salvaging in longwall.

UNDERGROUND COAL GASSIFICATION

Scope, application, methods of gasification, design of gasification plants, coal bed methane. Environmental monitoring techniques and computer applications in coal gasification techniques.

Text Books 1 Das S.K., Modern Coal Mining Technology, Lovely Prakashan, Dhanbad, Singh, T.N., and Dhar, B.B. Thick Seam Mining, Problems and Issues, Oxford & IBH Publishers, 2 **Reference Books** Mathur, S.P., Mining Planning for Coal, M G Consultants, Bilaspur, Peng S.S. and Chiang, 1 2 H.S., Longwall Mining, John Willey and Sons, New York, 3 T.N. Singh, Underground Winning of Coal, Oxford IBH Publishers. 4 R.D. Singh, Principles and Practices of Modern Coal Mining, New Age International, **Course Designers Department/Name of** S.No **Faculty Name** Email id Designation the College 1 P.KUMARAN ASST. PROF -GR-II Mech / AVIT Kumaranp@avit.ac.in 2 **R.PRAVEEN** ASST. PROF -GR-II Mech / AVIT praveen@avit.ac.in

		Category	L	Т	Р	Credit
17ARPI03	INTRODUCTION TO AIRCRAFT INDUSTRY AND AIRCRAFT SYSTEMS	INDUSTRY ELECTIVE (INFOSYS)	3	0	0	3

Preamble

To provide knowledge about stakeholders in aviation industries and employment skills required by companies.

Prerequisite

NIL

Course Objectives

004100	
1	To provide an understanding of the basics of aircrafts.
2	To provide a deep knowledge of stakeholders in aviation industries.
3	To develop analytical skills for taking decisions.
4	To develop criticizing skills and compare for better and best.
5	To develop entrepreneurial skills.

Course Outcomes

In the successful completion of the course, students will be able to

CO1.	Define principles of operation and label components of an aircraft.	Remember
CO2.	Explain working of components of aircraft and its systems.	Understand
CO3.	Employ analytical skills for judgement of best.	Apply
CO4.	Categorise knowledge gained and will be able to apply suitably.	Analyze
CO5.	Evaluate and balanced approach towards employment in industries.	Evaluate
CO6.	Create benchmarks by advising juniors about opportunities.	Create

Mapping with Programme Outcomes and Programme Specific Outcomes

		1011 1 1 0	0					******							
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	L	L	L	L	-	-	-	-	-	-	-	-	L	L	L
CO2	L	L	L	L	-	-	-	-	-	-	-	-	L	L	L
CO3	S	S	S	S	-	-	-	-	-	-	-	-	Μ	Μ	Μ
CO4	S	S	S	S	-	-	-	-	-	-	-	-	S	S	S
CO5	S	S	S	S	-	-	-	-	-	-	-	-	S	S	S
CO6	S	S	S	S	-	-	-	-	-	-	-	-	S	S	S

S- Strong; M-Medium; L-Low

Syllabus		
UNIT – I	AIRCRAFT INDUSTRY OVERVIEW	8
Evolution and	History of Flight, Types Of Aerospace Industry, Key Players in Aerospace Industry, Aer	rospace
Manufacturing,	Industry Supply Chain, Prime contractors, Tier 1 Suppliers, Key challenges in Industry Supply	Chain,
OEM Supply	Chain Strategies, Mergers and Acquisitions, Aerospace Industry Trends, Advan	ces in
Engineering/CA	D/CAM/CAE Tools and Materials technology, Global and Indian Aircraft Scenario.	

UNIT – II INTRODUCTION TO AIRCRAFTS

Basic components of an Aircraft, Structural members, Aircraft Axis System, Aircraft Motions, Control surfaces and High lift Devices. Types of Aircrafts - Lighter than Air/Heavier than Air Aircrafts Conventional Design Configurations based on Power Plant Location, Wing vertical location, intake location, Tail Unit Arrangements, Landing Gear Arrangements. Unconventional Configurations-Biplane, Variable Sweep, Canard Layout, Twin Boom Layouts, Span loaders, Blended Body Wing Layout, STOL and STOVL Aircraft, Stealth Aircraft. Advantages and disadvantages of these Configurations.

UNIT – III INTRODUCTION TO AIRCRAFT SYSTEMS

Types of Aircraft Systems, Mechanical Systems, Electrical and Electronic Systems, Auxiliary systems, Mechanical Systems: Environmental control systems (ECS), Pneumatic systems, Hydraulic systems, Fuel systems, Landing gear systems, Engine Control Systems, Ice and rain protection systems, Cabin Pressurization and Air Conditioning Systems, Steering and Brakes Systems Auxiliary Power Unit, Electrical systems: Avionics, Flight controls, Autopilot and Flight Management Systems, Navigation Systems, Communication, Information systems, Radar System.

UNIT – IV BASIC PRINCIPLES OF FLIGHT

Significance of speed of Sound, Air speed and Ground Speed, Properties of Atmosphere, Bernoulli's Equation, Forces on the airplane, Airflow over wing section, Pressure Distribution over a wing section, Generation of Lift, Drag, Pitching moments, Types of Drag, Lift curve, Drag Curve, Lift/Drag Ratio Curve, Factors affecting Lift and Drag, Center of Pressure and its effects. Aerofoil Nomenclature, Types of Aerofoil, Wing Section- Aerodynamic Center, Aspect Ratio, Effects of lift, Drag, speed, Air density on drag.

UNIT – V BASICS OF FLIGHT MECHANICS

Mach Waves, Mach Angles, Sonic and Supersonic Flight and its effects

Stability and Control

Degree of Stability- Lateral, Longitudinal and Directional Stability and controls of Aircraft. Effects of Flaps and Slats on Lift Coefficients, Control Tabs, Stalling, Landing, Gliding Turning, Speed of Sound, Mach Numbers, Shock Waves

Aircraft Performance and Maneuvers

Power Curves, Maximum and minimum speeds of horizontal flight, Effects of Changes of Engine Power, Effects of Altitude on Power Curves, Forces acting on an Aeroplane during a Turn, Loads during a Turn, Correct and incorrect Angles of Bank, Aerobatics, Inverted Maneuvers, Maneuverability.

TEXT BOOK:

- 1. Flight without Formulae by A.C Kermode, Pearson Education, 10th Edition.
- 2. Mechanics of Flight by A.C Kermode, Pearson Education, 5th Edition.
- 3. Fundamentals of Flight, Shevell, Pearson Education, 2nd Edition.

REFERENCES:

- 1. Introduction to Flight by Dave Anderson.
- 2. Aircraft Systems: Mechanical, Electrical and Avionics Subsystems Integration by Ian Moir, Allan Seabridge
- 3. An Introduction to Aircraft Certification; A Guide to Understanding JAA, EASA and FAA by Filippo De Florio, Butterworth-Heinemann.

9

8

10

10

Course Designers:

S.No	Name of the Faculty	Mail ID
1	Senthil kumar M	senthil@vmkvec.edu.in
2	R.Gowri Shankar	gowrishankar@vmkvec.edu.in
3	Sanjay Singh	sanjay@vmkvec.edu.in

		Category	L	Т	Р	Credit
17ARPI04	DESIGN OF AIRCRAFT STRUCTURES	INDUSTRY ELECTIVE (INFOSYS)	3	0	0	3

Preamble

To study about load taking capabilities of components of aircraft structures.

Prerequisite NIL

Course Objectives

1	To understand the basic concepts of strengthening components of aircrafts.
2	To develop an understanding of applications of basic theories of strength of materials.
3	To develop analytical skills for selection of suitable and precise method.
4	To design and suggest modification in existing load carrying members.
5	To develop entrepreneurial skills.

Course Outcomes

In the successful completion of the course, students will be able to

CO1.	Define principles of operation and label components of aircraft structures. Remember					
CO2.	Explain working of load carrying members. Understand					
CO3.	Employ analytical skills to calculate stresses at different points. Apply					
CO4.	Categorise the structure and estimate reliable performance.	Analyze				
CO5.	Evaluate and modify the system for meeting suitable requirement.	Evaluate				
CO6.	Formulate and design a new modified structure for new applications.	Create				

Mapping with Programme Outcomes and Programme Specific Outcomes

	B		8								0 = = = 0.0				
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	L	L	L	L	-	-	-	-	-	-	-	-	L	L	L
•															
CO2	L	L	L	L	-	-	-	-	-	-	-	-	L	L	L
	0	a	a	a						a	-	-			
CO3	S	S	S	S	-	-	-	-	-	S	-	-	Μ	M	M
•															
CO4	S	S	S	S	-	-	-	-	-	-	-	-	S	S	S
CO5	S	S	S	S	-	-	-	-	-	-	S	-	S	S	S
CO6	S	S	S	S	-	-	-	-	-	-	-	S	S	S	S

S- Strong; M-Medium; L-Low

Syllabus						
UNIT – I	FUNDAMENTALS OF AIRCRAFT DESIGN PROCESS AND STRUCTURAL ANALYSIS	8				
Introduction, Phases of Aircraft Design, Aircraft Conceptual Design Process, Conceptual Stage, Preliminary Design,						
Detailed Design, Design Methodologies, Review of Hooke's Law, Principal stresses, Equilibrium and Compatibility,						
Determinate Structures, St. Venant's Principle, Conservation of Energy, Stress Transformation, Stress Strain						
Relations.						
	A					

UNIT – II INTRODUCTION TO AIRCRAFT STRUCTURES AND AIRCRAFT LOADS

Types of Structural members of Fuselage and wing section Ribs, Spars, Frames, Stringers, Longeron, Splices, Sectional Properties of structural members and their loads, Types of structural joints, Type of Loads on structural joints, Aerodynamic Loads, Inertial Loads, Loads due to engine, Actuator Loads, Maneuver Loads, VN diagrams, Gust Loads, Ground Loads, Ground conditions, Miscellaneous Loads.

9

8

12

8

UNIT – III AIRCRAFT MATERIALS AND MANUFACTURING PROCESSES

Material selection criteria, Aluminum Alloys, Titanium Alloys, Steel Alloys, Magnesium Alloys, copper Alloys, Nimonic Alloys, Non Metallic Materials, Composite Materials, Use of Advanced materials Smart materials, Manufacturing of A/C structural members, Overview of Types of manufacturing processes for Composites, Sheet metal Fabrication, Machining, Welding, Super-plastic Forming And Diffusion Bonding

UNIT – IV STRUCTURAL ANALYSIS OF AIRCRAFT STRUCTURES

Theory of Plates- Analysis of plates for bending, stresses due to bending, Plate deflection under different end conditions, Strain energy due to bending of circular, rectangular plates, Plate buckling, Compression buckling, shear buckling, Buckling due to in plane bending moments, Analysis of stiffened panels in buckling, Rectangular plate buckling, Analysis of Stiffened panels in Post buckling, Post buckling under shear. **Sample Exercises**.

Theory of Shells-Analysis of Shell Panels for Buckling, Compression loading, Shear Loading / Shell Shear Factor, Circumferential Buckling Stress, **Sample exercises**

Theory of Beams-Symmetric Beams in Pure Bending, Deflection of beams, Unsymmetrical Beams in Bending, Plastic Bending of beams, Shear Stresses due to Bending in Thin Walled Beams, Bending of Open Section Beams, Bending of Closed Section Beams, Shear Stresses due to Torsion in Thin Walled Beams. **Sample Exercises**.

Theory of Torsion - Shafts of Non-Circular Sections, Torsion in Closed Section Beams, Torsion in Open Section Beams, Multi Cell Sections, **Sample Exercises**.

UNIT – V AIRCRAFT STRUCTURAL REPAIR, AIRWORTHINESS AND AIRCRAFT CERTIFICATION

Definition, Airworthiness Regulations, Regulatory Bodies, Type certification, General Requirements, Requirements Related to Aircraft Design Covers, Performance and Flight Requirements, Airframe Requirements, Landing Requirements, Fatigue and Failsafe requirements, Emergency Provisions, Emergency Landing requirements. Types of Structural damage, Nonconformance, Rework, Repair, Allowable damage Limit, Repairable Damage Limit, Overview of ADL Analysis, Types of Repair, Repair Considerations and best practices.

TEXT BOOK:

- 1. Aircraft Design-A Conceptual Approach by Daniel P.Raymer, AIAA education series,6th Edition
- 2. Airframe Structural Design by Michael Niu, Conmilit Press, 1988,2nd Edition
- 3. Airframe Stress Analysis and Sizing by Michael Niu, Conmilit Press, 1999,3rd Edition.

REFERENCES:

- 1. The Elements of Aircraft Preliminary Design Roger D. Schaufele, Aries Publications, 2000
- 2. Aircraft Structural Maintenance by Dale Hurst, Avotek publishers, 2nd Edition, 2006
- 3. Aircraft Maintenance & Repair by Frank Delp, Michael J. Kroes & William A. Watkins, Glencoe &McGraw-Hill,6th Edition, 1993

Course Designers:

S.No	Name of the Faculty	Mail ID
1	Senthil kumar M	senthil@vmkvec.edu.in
2	R.Gowri Shankar	gowrishankar@vmkvec.edu.in
3	Sanjay Singh	sanjay@vmkvec.edu.in